
Smart Ranger: A MCTS-inspired Approach for
Optimal Strategy Approximation

Eric Tang
Statistics and CS

Harvard University
etang@college

Gerson Personnat
Statistics and CS

Harvard University
gersonpersonnat@college

Jessica Li
Statistics and CS

Harvard University
jessica_li@college

1 Introduction1

Ranger is a single-player card game played with a standard shuffled deck of 52 cards. The player2

is tasked with selecting a subset of cards with size at most 20 from the deck, such as “Give me any3

heart, any king, or any ace." The deck is then dealt sequentially from the top of the deck until a card4

is dealt within that subset. All previous cards are given to the dealer. At this stage, the player is5

prompted for another subset, after which the same process repeats until the player has three cards in6

their hand. Following this, the dealer draws until they have at least five cards, and both the player and7

dealer form the best possible three-card poker hand. The winner is determined based on teen patti8

hand rankings, with the dealer winning ties and automatically winning with any three of a kind when9

the player specifically has three Aces.10

The crux of the game’s complexity relies on its use of balance, creating a unique decision-making11

environment where the player must weigh the potential positive and negative outcomes of a given12

subset. The additional constraints of the game are designed to prevent trivial edge case strategies: the13

dealer drawing to at least five cards ensuring the dealer has a baseline hand and the dealer winning14

ties and often beating three Aces to prevent the player from directly going for the best possible hand15

in the game (3 A’s).16

Our code can be found here (in order to access the link, please download the pdf).17

2 Problem and Algorithmic Motivation18

Ranger is especially compelling due to its large state and action space. With a shuffled deck of 5219

cards, there are a vast number of possible card combinations, and the player’s hand evolves with each20

card drawn. To address these challenges, we aim to explore the problem using an algorithm inspired21

by Monte Carlo Tree Search (MCTS), whose primary goal is to build a search tree that reflects the22

most promising actions at any given state. Implementing pure MCTS is a computational intractable,23

as the sheer number of permutations of reasonable state-action pairs for each round makes simulating24

individual trajectories a herculean task.25

To address these issues, we explore several modifications to the basic pure MCTS algorithm through26

domain knowledge-driven trimming of a reasonable action space conditional on a given state of the27

hands, pruning the action space without losing critical information. Although we will discuss our28

pruning algorithm in more depth in the following sections, the following rough principles will be the29

major themes used to guide our pruning:30

1. Symmetry: During a runout of a game, we may take advantage of clear instances of31

symmetry. Consider the start of the game, for instance. From the player’s perspective, the32

suits are entirely symmetric–as there is no differentiation between clubs and hearts in the33

https://colab.research.google.com/drive/1MHxYDu9bMnPazz6opJd8CWVRMyX6_3z9?usp=sharing


hand rankings, the player similarly should have no reason to consider “all Hearts" as distinct34

from “all Clubs".35

2. Range Balance: Since the player must use all of their given cards, a player’s specified range36

must achieve a balance between two goals: improving the player’s hand and blocking the37

dealer’s potential. For example suppose the player is presented with the following state:38

A Hearts, 2 Hearts (player hand), 4 Diamonds, 5 Spades (dealer hand).39

Here, any non-heart King is practically inconsequential to both the player and the dealer.40

There is practically no reason for the player to ask for such cards in such a state, as they41

run the risk of ending in a state such where their hand is A Hearts, 2 Hearts, K Spades,42

and having only a high-card hand instead of a flush, straight, or straight flush that they43

could have obtained by asking for some combination of Hearts and Threes. Thus, asking44

for inconsequential cards runs the risk of self-sabotage while not materially affecting the45

dealer’s hand, and we can reasonably exclude such cards from consideration.46

3 Algorithmic Implementation47

As noted above, our implementation of MCTS includes significant deviations from the pure version48

of the algorithm. Although our initial range selection relies on an algorithm reminiscent of the basic49

trimmed MCTS algorithm, subsequent rounds include more heuristic-based pruning following the50

two action space pruning principles outlined above.51

3.1 Round 152

In the first round, the game begins with a full, shuffled deck with the player and dealer both having53

the same state of no cards. Thus, the optimal solution for this first step will be identical across54

all potential trajectories of the game. For the first round, then, we simulate win percentages for55

reasonable specified ranges to determine an approximately optimal solution, which we will hard-code56

for our investigations into the second and third rounds.57

With the symmetric uniformity of the first round, we should only need to consider subsets of the 1358

ranks as potential candidates for our range. In other words, we posit we do not have to consider suits59

since nothing differentiates a suit from another when the player has no cards.60

Thus, instead of performing iterations over the action space of size
20∑
i=1

(
52

i

)
≈ 2.8 · 1014,

we only need to consider subsets of at most 5 ranks of the 13 ranks (since each rank contains 4
possible cards), or an action space of size

5∑
i=1

(
13

i

)
= 2379,

a still-large, but more manageable action space to iterate over.61

Due to the remarkably high variance of the game–the same action can lead to a breathtakingly large62

number of possible states–we need to run each node with a suitably large number of iterations to63

obtain any reasonable inference on the win probabilities for any given action. Thus, in order to64

maintain our search to within our computational bounds, we use a simple greedy heuristic after the65

first round–seeking to search for high straights, triples, or flushes–to identify the win probabilities for66

each action. Doing so, we obtain the optimal starting range as (10, J,Q,K,A), simply the top five67

ranks, which checks out with our intuition.68

3.2 Round 2: Dynamic Strategy with MCTS69

Going into the second round, we no longer have the consistent state space in the first round where the70

player and dealer always have the same hands throughout every runout of the game, losing some of71

2



our simplifying notions of symmetry. This round is also the most intuitively complex–at this time,72

the player has only one card, offering them flexibility as to which hand to shoot for, making the73

optimal balance between obtaining a strong hand and blocking the dealer’s possible hands remarkably74

opaque.75

With these difficulty considerations in mind, the following principles were the most emphasized in76

our implementation to either serve as approximations that shrunk our search space or comments on77

particular hyperparameter selections:78

1. Action Space Pruning: Once again, we have a monumental action space for our potential79

ranges, though we no longer can rely on symmetry arguments as we have done in the80

first round. For this round, we look towards our second algorithmic principle of range81

balance–noting a fundamental assumption that the only reasonable cards a player would82

ask for would serve either the purpose of improving the player’s hand or hindering the83

dealer’s possible hands. Thus, in our implementation, we only consider range combinations84

of helpful cards (defined as cards that allow the player to go for a flush, straight, or triple in85

the third round) and blocking cards (defined as cards that, if the dealer were to receive them,86

would give them a flush, straight, or triple).87

2. Balancing Player vs. Dealer Strength: Including dealer-blocking cards adds an additional88

risk since blocking the dealer can act as a means of sabotaging the player’s own hand89

strength. Thus, although there are very reasonable states in which a player would want to90

block the dealer (e.g. states in which the player is already ahead of the dealer and the dealer91

is one away from a hand that would beat the player’s best hand), it would be silly for the92

player to construct their range solely focused on blocking the dealer and ignoring cards93

that helped them. Thus, for this round, we only consider subsets where at least half of the94

specified subset includes cards that improve the player’s hand (some of these cards may95

coincidentally be dealer-blocking cards) with the remainder being the other dealer-blocking96

cards that do not help the player meaningfully.97

3. Simulation-Driven Optimization: Similar to the first round, despite our ability to prune the98

action space down from just shy of the quadrillions into the thousands, the high variance and99

wide outcome distributions from the same action necessitate a large number of simulations100

for each action/node, slowing down the execution of our algorithm considerably. Even101

implementing parallelization to take advantage of the inherent iterative nature of simulating102

runouts, the sheer number of simulations required for reliable estimates of win probabilities103

is a remarkably difficult challenge and computational bottleneck.104

The results from the second round are quite illuminating, as they follow alongside our intuitive105

explanations well. For instance, when there aren’t many concerns of the dealer’s hand, the algorithm106

presents a greedy-like range, typically including cards involved in obtaining a straight (which, in107

three-card poker, is rated higher than a flush). For instance, presented with the states108

P : 10 Spades
D : ∅,

the player has no discernable threat from the dealer. Our algorithm deigns to output the range109

(9, 10, J,Q), notably ignoring the 8 rank despite it being a part of a potential straight with the player’s110

10. Although this potentially could be explained with some noise in our simulations, it’s also likely111

explained through a domain knowledge-based explanation of the current state. On one hand, the 8 is112

the weakest card of the five potential cards involved in straights with the 10–not only is it involved113

in the lowest possible straight, it also restricts optionality in the third round, as the algorithm is114

essentially forced to only specify a 9 in order to make a hand (unless the 8 you draw happens to be the115

same suit, after which you can go for a flush), which is a remarkably narrow range that can allow the116

dealer to draw a large amount of cards and beat the player’s straight. Although the 9 is also involved117

in the lowest possible straight, the algorithm can go for either an 8 or a J for the third round, giving118

the dealer fewer cards in expectation. Similarly, although obtaining a 10 would similarly restrict the119

3



player in the third round, the resultant hand (three of a kind) is much stronger than the weak straight,120

making the risk of giving the dealer more cards seemingly worthwhile. As a separate point, since121

the dealer is guaranteed to draw to at least five cards and has currently not drawn any, the player is122

allowed to be slightly more selective in the range they provide, as the dealer will draw cards anyways.123

Although this second note is difficult to precisely quantify due to the highly volatile nature of the124

game runouts, it acts as a qualitative heuristic that reasonably explains the current state situation.125

With these concepts in mind, it seems to suggest that our algorithm is indeed deviating from basic126

greedy strategies simply going for the flush, straight, or triple and incorporating the state information127

from the dealer’s hand as well, a promising sign for improved performance.128

However, to further illustrate that the algorithm indeed incorporates the dealer’s space in a nontrivial129

manner, we also consider the following runout where the dealer has a threatening potential hand:130

P : 10 Spades
D : 7 Diamonds, 7 Clubs, 4 Hearts,

where our algorithm once again presents a deviation from the simple deterministic greedy strategy in131

returning the range (7, 9, 10, J,Q). Indeed, once again, we see our algorithm deign not to include132

the pure greedy 8 and instead include the blocking card of 7–a card that does not help the player133

meaningfully but is still too important to ignore for the purpose of blocking the dealer. With the134

player hand being equivalent to the previous runout example, we demonstrate that our algorithm135

exhibits the balance between aggressive greedy and defensive blocking dependent on both the player136

and the dealer’s hand–a nuanced strategy that showcases our algorithmic design principles that should137

compare well to the baseline deterministic strategies.138

3.3 Round 3: Greedy Pruning Strategy139

In the third round, the space becomes quite a bit simpler, as the benefit of blocking the dealer becomes140

much less apparent. Whereas blocking the dealer in the second round offered the player optionality141

in the third round to salvage their hand, the third round concludes the game–if the blocking card does142

not help the player, the player has purely just sabotaged their hand. Although there are certainly edge143

cases where this may not be the pure optimum, a more deterministic greedy-like strategy would be an144

appropriate approximation for the final round, allowing for dramatically improved computational145

efficiency for a relatively low performance loss.146

For instance, suppose the player is presented with the following space:147

P : 10 Spades, 9 Clubs
D : 7 Diamonds, 7 Clubs, 4 Hearts, 2 Spades.

It is purely nonsensical for the player to block the dealer by specifying a 7 or 3, for instance, as the148

dealer would, at worst, have a pair of 7s and the player would just have a high card (note that blocking149

cards that also help the player are still considered). With this domain in mind, the optimal range for150

the large majority of runouts will simply approximate the greedy strategy for the player to obtain a151

high hand ranking.152

4 Results153

Using parallelization to speed up our simulation process, we ran154

2000 simulations using our MCTS-inspired algorithm and a naive155

greedy strategy (a strategy that directly goes for triples, flushes,156

or straights, see driver code under “Baseline Strategy"), finding157

that the player wins about 50.5% of the time using our modified158

MCTS algorithm versus only 39.15% of the time using a greedy159

strategy, a dramatic improvement in win percentage.160

4



161

162

For an analysis of the simulations themselves, the dealer scores are higher and more clustered towards163

the upper range with our modified MCTS algorithm compared to the naive greedy strategy. Such a164

trend indicates that our modified MCTS algorithm is slightly more picky than the greedy strategy in165

its ranges–although this results in the dealer acquiring more cards and stronger hands, our algorithm166

still demonstrated an increase in the win percentage overall, indicating an improvement in the balance167

between player and dealer strength; although we allowed the dealer hands to become marginally168

stronger, the improvement in the player hands made the algorithm net beneficial to the player.169

Indeed, looking at the player scores, the player tends to be more tightly clustered around decently170

strong hands–predominantly straights–with our amended MCTS algorithm compared to the greedy171

algorithm which more often obtains flushes or worse. Interestingly, the greedy algorithm also172

manages to obtain three-of-a-kind type hands, the strongest category in the ranking, more often than173

our modified algorithm, demonstrating that simply going for player hand strength alone while being174

ignorant of the dealer’s strength is detrimental (as those times when the player got a triple, it seems175

many times the dealer got a better triple). Again, this plot demonstrates the importance of our starting176

design principles–it is not sufficient to only consider the player’s hand strength in this game, but to177

also consider the interactions between player and dealer as they evolve through the rounds.178

5 Extension: 5-Card Poker179

The 5-card poker variant introduces additional complexity due to the larger state space and adjusted180

scoring priorities. This extension was designed to test the adaptability of the MCTS-based strategy181

and explore how the optimal subset selection shifts when more cards are involved and there is more182

granular scoring.183

5.1 Modifications in Implementation184

1. Iterative Hand Refinement: Later rounds use MCTS to dynamically adjust the strategy185

based on the evolving game state. The algorithm prioritizes subsets that enhance the186

probability of achieving high-value hands like flushes or straights while minimizing the187

dealer’s opportunities.188

5



2. Pruning for Computational Feasibility: Due to the larger state space, we used more189

aggressive pruning techniques. Subsets that neither contribute to building a strong hand nor190

block the dealer were excluded. This ensures that computational resources focus on the191

most promising actions.192

The first round is equivalent to the three card version, so similarly, we find that the optimal193

strategy (which is confirmed by running MCTS on the initial state in the game tree, when194

the dealer and taker have no cards) is to greedly the highest ranks 10, J , K, Q, A.195

For subsequent rounds, we ran our MCTS algorithm under two pruning strate-196

gies. The first strategy restricted the set of possible actions at a node by taking197

a selection the remaining cards (not in the dealer or player’s hand) and returning198

min(20, number of selected remaining cards) subsets of the remaining cards. The set of199

remaining cards was restricted to be the set of "blocking" cards, which we defined to be200

cards where the suit or rank of that card is represented at least once in the dealer’s hand and201

"helping" cards, where the suit or rank is represented at least once in the player’s hand. This202

assumes, based on domain knowledge, that is preferrable for the player to request a larger203

subset of cards.204

The second pruning strategy aims to leverage the symmetry and suits and ranks. At each205

iteration, the MCTS explores a subtree of the game that we hypothesized to be optimal206

based on the initial results from the first strategy. At each round, the MCTS restricts the207

action space to consider all possible suit-rank combinations in the current dealer hand.208

For example suppose the player has a 10 of Spades after the first round. Then the MCTS209

algorithm will choose between actions requesting (S, 10) (requesting any spade and a 10),210

(10, ) (requesting a card of rank 10) and (S, ), requesting any spade. Likewise, say the player211

has a Q Spades and 10 Spades after the second round. The player now has suits S and ranks212

10 and Q represented in their hand. Then the MCTS algorithm will select between actions213

(S, )(S, 10), (Q, ), (Q, 10), (Q,S), (10, ).214

3. Score Evaluation: The ‘convert_hand_to_value‘ function was adapted to evaluate 5-card215

hands with greater granularity. Fractional components, such as tie-breaking contributions216

from secondary kickers, were particularly important in distinguishing between hands of217

similar ranks. From a given node in the search tree, for a given state s, the MCTS algorithm218

chooses an action a to explore using the follower UCB (upper-confidence bound) score.219

The preceding state is chosen based on a random simulation of one round of the game. For220

example, if the dealer hand is a 10 Jacks. Then based for a given action (i.e. specifying221

a set of cards to request), we expand the current search tree to a child node by randomly222

simulating a round of the Ranger game. In this case, if the action is (10, ) (request a 10),223

then according to a random simulation, the preceding state might be the player hand having224

10 Jacks and 10 of hearts with some dealer hand. We have a child node representing the225

state. To evaluate a node, we used a standard UCB bound:226

UCB(s, a) = winschild
visitschild

+ C ·
√

log(visitsstate)
visitschild

, where winschild is the number of times the player227

has won from the child state, visitschild is the number of times the algorithm has explored228

the child, and visitsstate is the number of times the algorithm has explored the current state.229

230

This UCB policy is also used for the third-card version. However, for the five-card version231

instead of using the number of times a player won to evaluate a node, we instead use the232

number of times a player has reached a score > α from some node for computational233

reasons. In later rounds of the game, the dealer may have many cards. To determine whether234

the player won or not entails computing the best 5-card hand that the dealer can get which235

requires enumerating over
(
n
5

)
subsets if the dealer has n cards. When n > 40,

(
n
5

)
is a236

practically large number, and in constrast to the three card games,
(
n
3

)
<<

(
n
5

)
. In our final237

implementation, we set α = 7.5 by observing the performance of different values of α over238

a few simulations.239

6



5.2 Results240

241

In implementation, our algorithm sometimes runs into odd local242

optima (e.g. settling on a singular non-relevant card, likely due243

to the noise from the simulations being too high–we could solve244

this theoretically with more iterations, but that would require more245

computational resources to be feasible). With a slight amount of246

human intervention (simply asking it to generate a more reason-247

able range), we obtain the following 2000 simulations. With the248

rerunning of the incorrect ranges outlined above, the algorithm249

obtains a win percentage of about 48.28%, which, in comparison250

to our implementation of the greedy algorithm, is a little bit worse251

(our greedy algorithm achieves a win percentage of 59.54%), in-252

dicating that the algorithm still has yet to handle the larger state253

space well enough for us to reach the greedy algorithm’s performance. However, we do see traces254

of similar results from our analysis of the simpler three-card version of the game. Our modified255

MCTS algorithm is generally more picky than the greedy algorithm (although we get some iterations256

where the algorithm gets a weak hand like 4-5, likely due to the identification of the incorrect optima257

as explained above), the bulk of the iterations actually obtain more four-of-a-kind type hands in258

comparison to the greedy algorithm, perhaps indicating a slightly higher degree of the MCTS-based259

algorithm being slightly pickier than the general naive strategy when working as intended (this is also260

supported by the dealer scores in the MCTS-based algorithm being more biased upward than in the261

naive greedy case).262

6 Extension: 2-Player Poker263

The two-player extension of Ranger introduces direct competition and new rules that require dynamic264

decision-making. To address balance issues, increase strategic depth, and ensure that players don’t265

end up with large hands, we adapted how cards are allocated. If a card is drawn and matches the266

active player’s specified subset, that card is given to the player, and the turn ends. If no match occurs,267

up to a maximum of three cards are drawn and given to the opponent. This rule also removes the268

7



guarantee that players receive a fixed number of cards per round, requiring a more dynamic and269

state-dependent strategy.270

6.1 Modifications in Implementation271

1. State-Focused Subset Recommendations: Given the uncertainty in hand sizes as well as272

the possibility of Player 2 having cards before their first turn, the algorithm for the 2-player273

game dynamically adapts to the current state of the game. Instead of hard coding strategies274

solely based on the round number, our algorithm dynamically adapts its recommendations275

based on the player’s current hand and the opponent’s potential hand.276

• Early and Mid Rounds: In early to mid rounds, if a player’s hand is empty, the algorithm277

recommends a broad subset consisting of high-value ranks (10 → A) to maximize278

potential outcomes. Otherwise, the algorithm balances improving the player’s hand279

and blocking the opponent’s potential combinations. Subsets are dynamically pruned280

to 1) include cards that help the player’s hand (e.g., completing a flush or straight) and281

2) include cards that block the opponent’s potential combinations (e.g., preventing a282

straight or triple). However, blocking is considered secondary to helping the player’s283

hand and is included only when it aligns with helping the player.284

• Final Rounds: In the last round, the algorithm exclusively targets cards that improve285

the player’s hand. Blocking the opponent is deprioritized, as it would limit the player’s286

ability to maximize their final hand strength. This approach ensures the player focuses287

on achieving the strongest possible hand rather than exploring options that no longer288

provide value.289

6.2 Results290

To test the effectiveness of our MCTS algorithm, we compared 100 simulations of our MCTS291

algorithm (limited by computational constraints) to 2000 simulations of a baseline greedy algorithm.292

293

294

With our MCTS-based algorithm, Player 1 won 60% of the time (60 wins), Player 2 won 39% of295

the time (39 wins), and there were ties 1% of the time (1 time). With the baseline greedy algorithm,296

8



Player 1 won 54.35% of the time (1087 wins), Player 2 won 45.2% of the time (904 wins), and there297

were ties 0.45% of the time (9 times).298

The baseline strategy produces tightly clustered scores (4-5) which makes sense since it is determinis-299

tic in nature (both players aim for straightforward hands like three of a kinds or flushes). In contrast,300

the MCTS-based approach shows a wider spread of scores, particularly for Player 1, indicating301

dynamic adaptability and a balance between exploration and exploitation. This allows Player 1 to302

leverage the first-move advantage more effectively, with higher frequencies of scores above 5 com-303

pared to the baseline and a increased win percentage from 54.35% to 60%. Player 2’s performance304

under MCTS shows increased variance, with occasional high scores (6) but also a greater presence305

of lower scores (2-3). This suggests that the strategy incorporates blocking more effectively but306

sometimes sacrifices hand strength as a trade-off.307

These preliminary results seem to indicate that the 2-player game is a game more focused on initiative308

as opposed to reactivity–Player 1 getting to specify ranges first seems to perform better than Player 2.309

In our continued work, we aim to study whether or not the second player can indeed deviate in their310

behavior to play in reaction to the first player, perhaps through a self play-type algorithm.311

7 Next Steps and Future Work312

Going forward, we want to conduct a more nuanced comparison of MCTS and naive strategies313

to understand the significance of the difference in win rates, and explore parameter fine-tuning to314

see how it could impact the win rates and computational efficiency. Additionally, our analysis of315

the 5-card variant is somewhat surface level, and we want to explore this and other variants (like316

multi-player game play) in more depth.317

1. Overarching Assumptions: A fundamental assumption we made (our second design318

principle) is that a player would only consider cards helping their own hand or blocking the319

dealer, a semi-greedy-esque line of thinking that may have biased our algorithm to prefer320

ranges that coarsely emulate the greedy algorithm. Perhaps there is a way to think about the321

future where a card doesn’t directly block the dealer nor help the player but could feasibly322

be included in the player’s range in a given round.323

2. Three Card Base Game: In addition to the pruning and symmetry arguments we used324

to guide our simulations, our overarching algorithm made a few simplifying assumptions325

for the sake of computational efficiency with our current resources. In particular, as the326

second round was already computationally straining, implementing a complete simulation327

of the third and final round as an additional layer would have been infeasible with our328

current timeline, prompting us to implement our more greedy-based approximation. Further329

study would involve a more complete investigation into the third round to ensure that our330

greedy-based approximation is indeed sound.331

3. Five Card Game: Like in the base three card game of Ranger, we also assume that the332

player should consider cards that greedily help them acquire the best possible hand. We333

also assume that the player should use a strategy only considering the cards that most help334

its hand in the current round. Future work could consider how we can incorporate more335

forward-looking strategies in earlier rounds by thinking of ways to prune the action space336

in a less greedy manner. In addition, in our implementation, we essentially use the same337

pruning strategy across round, so we could consider what happens if we evolve the pruning338

of the strategy space across rounds.339

4. 2-Player Game: Future improvements could focus on smarter, opponent-aware strategies,340

such as refining pruning techniques, adding long-term planning, and exploring ways to341

balance the advantage of going first. Since Player 1 consistently outperforms Player 2 due to342

the initiative of specifying ranges first, future work could explore more adaptive strategies343

for Player 2, such as reactive blocking or self-play-type algorithms. Alternative rule changes,344

like giving Player 2 additional advantages, could also help improve fairness and balance.345

9


	Introduction
	Problem and Algorithmic Motivation
	Algorithmic Implementation
	Round 1
	Round 2: Dynamic Strategy with MCTS
	Round 3: Greedy Pruning Strategy

	Results
	Extension: 5-Card Poker
	Modifications in Implementation
	Results

	Extension: 2-Player Poker
	Modifications in Implementation
	Results

	Next Steps and Future Work

