
Smart Ranger: A MCTS-inspired Approach for Optimal Strategy Approximation

Eric Tang
Statistics and CS
Harvard University
etang@college

Gerson Personnat
Statistics and CS
Harvard University
gersonpersonnat@college

Jessica Li
Statistics and CS
Harvard University
jessica_li@college

1 Introduction

2 *Ranger* is a single-player card game played with a standard shuffled deck of 52 cards. The player
3 is tasked with selecting a subset of cards with size at most 20 from the deck, such as “Give me any
4 heart, any king, or any ace.” The deck is then dealt sequentially from the top of the deck until a card
5 is dealt within that subset. All previous cards are given to the dealer. At this stage, the player is
6 prompted for another subset, after which the same process repeats until the player has three cards in
7 their hand. Following this, the dealer draws until they have at least five cards, and both the player and
8 dealer form the best possible three-card poker hand. The winner is determined based on teen patti
9 hand rankings, with the dealer winning ties and automatically winning with any three of a kind when
10 the player specifically has three Aces.

11 The crux of the game’s complexity relies on its use of balance, creating a unique decision-making
12 environment where the player must weigh the potential positive and negative outcomes of a given
13 subset. The additional constraints of the game are designed to prevent trivial edge case strategies: the
14 dealer drawing to at least five cards ensuring the dealer has a baseline hand and the dealer winning
15 ties and often beating three Aces to prevent the player from directly going for the best possible hand
16 in the game (3 A’s).

17 Our code can be found [here](#) (in order to access the link, please download the pdf).

18 2 Problem and Algorithmic Motivation

19 Ranger is especially compelling due to its large state and action space. With a shuffled deck of 52
20 cards, there are a vast number of possible card combinations, and the player’s hand evolves with each
21 card drawn. To address these challenges, we aim to explore the problem using an algorithm inspired
22 by Monte Carlo Tree Search (MCTS), whose primary goal is to build a search tree that reflects the
23 most promising actions at any given state. Implementing pure MCTS is a computational intractable,
24 as the sheer number of permutations of reasonable state-action pairs for each round makes simulating
25 individual trajectories a herculean task.

26 To address these issues, we explore several modifications to the basic pure MCTS algorithm through
27 domain knowledge-driven trimming of a reasonable action space conditional on a given state of the
28 hands, pruning the action space without losing critical information. Although we will discuss our
29 pruning algorithm in more depth in the following sections, the following rough principles will be the
30 major themes used to guide our pruning:

31 1. **Symmetry:** During a runout of a game, we may take advantage of clear instances of
32 symmetry. Consider the start of the game, for instance. From the player’s perspective, the
33 suits are entirely symmetric—as there is no differentiation between clubs and hearts in the

34 hand rankings, the player similarly should have no reason to consider “all Hearts” as distinct
35 from “all Clubs”.

36 2. **Range Balance:** Since the player must use all of their given cards, a player’s specified range
37 must achieve a balance between two goals: improving the player’s hand and blocking the
38 dealer’s potential. For example suppose the player is presented with the following state:
39 A Hearts, 2 Hearts (player hand), 4 Diamonds, 5 Spades (dealer hand).

40 Here, any non-heart King is practically inconsequential to both the player and the dealer.
41 There is practically no reason for the player to ask for such cards in such a state, as they
42 run the risk of ending in a state such where their hand is A Hearts, 2 Hearts, K Spades,
43 and having only a high-card hand instead of a flush, straight, or straight flush that they
44 could have obtained by asking for some combination of Hearts and Threes. Thus, asking
45 for inconsequential cards runs the risk of self-sabotage while not materially affecting the
46 dealer’s hand, and we can reasonably exclude such cards from consideration.

47 3 Algorithmic Implementation

48 As noted above, our implementation of MCTS includes significant deviations from the pure version
49 of the algorithm. Although our initial range selection relies on an algorithm reminiscent of the basic
50 trimmed MCTS algorithm, subsequent rounds include more heuristic-based pruning following the
51 two action space pruning principles outlined above.

52 3.1 Round 1

53 In the first round, the game begins with a full, shuffled deck with the player and dealer both having
54 the same state of no cards. Thus, the optimal solution for this first step will be identical across
55 all potential trajectories of the game. For the first round, then, we simulate win percentages for
56 reasonable specified ranges to determine an approximately optimal solution, which we will hard-code
57 for our investigations into the second and third rounds.

58 With the symmetric uniformity of the first round, we should only need to consider subsets of the 13
59 ranks as potential candidates for our range. In other words, we posit we do not have to consider suits
60 since nothing differentiates a suit from another when the player has no cards.

Thus, instead of performing iterations over the action space of size

$$\sum_{i=1}^{20} \binom{52}{i} \approx 2.8 \cdot 10^{14},$$

we only need to consider subsets of at most 5 ranks of the 13 ranks (since each rank contains 4
possible cards), or an action space of size

$$\sum_{i=1}^5 \binom{13}{i} = 2379,$$

61 a still-large, but more manageable action space to iterate over.

62 Due to the remarkably high variance of the game—the same action can lead to a breathtakingly large
63 number of possible states—we need to run each node with a suitably large number of iterations to
64 obtain any reasonable inference on the win probabilities for any given action. Thus, in order to
65 maintain our search to within our computational bounds, we use a simple greedy heuristic after the
66 first round—seeking to search for high straights, triples, or flushes—to identify the win probabilities for
67 each action. Doing so, we obtain the optimal starting range as $(10, J, Q, K, A)$, simply the top five
68 ranks, which checks out with our intuition.

69 3.2 Round 2: Dynamic Strategy with MCTS

70 Going into the second round, we no longer have the consistent state space in the first round where the
71 player and dealer always have the same hands throughout every runout of the game, losing some of

72 our simplifying notions of symmetry. This round is also the most intuitively complex—at this time,
73 the player has only one card, offering them flexibility as to which hand to shoot for, making the
74 optimal balance between obtaining a strong hand and blocking the dealer’s possible hands remarkably
75 opaque.

76 With these difficulty considerations in mind, the following principles were the most emphasized in
77 our implementation to either serve as approximations that shrunk our search space or comments on
78 particular hyperparameter selections:

- 79 **1. Action Space Pruning:** Once again, we have a monumental action space for our potential
80 ranges, though we no longer can rely on symmetry arguments as we have done in the
81 first round. For this round, we look towards our second algorithmic principle of range
82 balance—noting a fundamental assumption that the only reasonable cards a player would
83 ask for would serve either the purpose of improving the player’s hand or hindering the
84 dealer’s possible hands. Thus, in our implementation, we only consider range combinations
85 of helpful cards (defined as cards that allow the player to go for a flush, straight, or triple in
86 the third round) and blocking cards (defined as cards that, if the dealer were to receive them,
87 would give them a flush, straight, or triple).
- 88 **2. Balancing Player vs. Dealer Strength:** Including dealer-blocking cards adds an additional
89 risk since blocking the dealer can act as a means of sabotaging the player’s own hand
90 strength. Thus, although there are very reasonable states in which a player would want to
91 block the dealer (e.g. states in which the player is already ahead of the dealer and the dealer
92 is one away from a hand that would beat the player’s best hand), it would be silly for the
93 player to construct their range solely focused on blocking the dealer and ignoring cards
94 that helped them. Thus, for this round, we only consider subsets where at least half of the
95 specified subset includes cards that improve the player’s hand (some of these cards may
96 coincidentally be dealer-blocking cards) with the remainder being the other dealer-blocking
97 cards that do not help the player meaningfully.
- 98 **3. Simulation-Driven Optimization:** Similar to the first round, despite our ability to prune the
99 action space down from just shy of the quadrillions into the thousands, the high variance and
100 wide outcome distributions from the same action necessitate a large number of simulations
101 for each action/node, slowing down the execution of our algorithm considerably. Even
102 implementing parallelization to take advantage of the inherent iterative nature of simulating
103 runouts, the sheer number of simulations required for reliable estimates of win probabilities
104 is a remarkably difficult challenge and computational bottleneck.

105 The results from the second round are quite illuminating, as they follow alongside our intuitive
106 explanations well. For instance, when there aren’t many concerns of the dealer’s hand, the algorithm
107 presents a greedy-like range, typically including cards involved in obtaining a straight (which, in
108 three-card poker, is rated higher than a flush). For instance, presented with the states

$$\begin{aligned} P &: 10 \text{ Spades} \\ D &: \emptyset, \end{aligned}$$

109 the player has no discernable threat from the dealer. Our algorithm deems to output the range
110 $(9, 10, J, Q)$, notably ignoring the 8 rank despite it being a part of a potential straight with the player’s
111 10. Although this potentially could be explained with some noise in our simulations, it’s also likely
112 explained through a domain knowledge-based explanation of the current state. On one hand, the 8 is
113 the weakest card of the five potential cards involved in straights with the 10—not only is it involved
114 in the lowest possible straight, it also restricts optionality in the third round, as the algorithm is
115 essentially forced to only specify a 9 in order to make a hand (unless the 8 you draw happens to be the
116 same suit, after which you can go for a flush), which is a remarkably narrow range that can allow the
117 dealer to draw a large amount of cards and beat the player’s straight. Although the 9 is also involved
118 in the lowest possible straight, the algorithm can go for either an 8 or a J for the third round, giving
119 the dealer fewer cards in expectation. Similarly, although obtaining a 10 would similarly restrict the

120 player in the third round, the resultant hand (three of a kind) is much stronger than the weak straight,
 121 making the risk of giving the dealer more cards seemingly worthwhile. As a separate point, since
 122 the dealer is guaranteed to draw to at least five cards and has currently not drawn any, the player is
 123 allowed to be slightly more selective in the range they provide, as the dealer will draw cards anyways.
 124 Although this second note is difficult to precisely quantify due to the highly volatile nature of the
 125 game runouts, it acts as a qualitative heuristic that reasonably explains the current state situation.
 126 With these concepts in mind, it seems to suggest that our algorithm is indeed deviating from basic
 127 greedy strategies simply going for the flush, straight, or triple and incorporating the state information
 128 from the dealer's hand as well, a promising sign for improved performance.
 129 However, to further illustrate that the algorithm indeed incorporates the dealer's space in a nontrivial
 130 manner, we also consider the following runout where the dealer has a threatening potential hand:

$P : 10$ Spades
 $D : 7$ Diamonds, 7 Clubs, 4 Hearts,

131 where our algorithm once again presents a deviation from the simple deterministic greedy strategy in
 132 returning the range $(7, 9, 10, J, Q)$. Indeed, once again, we see our algorithm deign not to include
 133 the pure greedy 8 and instead include the blocking card of 7—a card that does not help the player
 134 meaningfully but is still too important to ignore for the purpose of blocking the dealer. With the
 135 player hand being equivalent to the previous runout example, we demonstrate that our algorithm
 136 exhibits the balance between aggressive greedy and defensive blocking dependent on both the player
 137 and the dealer's hand—a nuanced strategy that showcases our algorithmic design principles that should
 138 compare well to the baseline deterministic strategies.

139 3.3 Round 3: Greedy Pruning Strategy

140 In the third round, the space becomes quite a bit simpler, as the benefit of blocking the dealer becomes
 141 much less apparent. Whereas blocking the dealer in the second round offered the player optionality
 142 in the third round to salvage their hand, the third round concludes the game—if the blocking card does
 143 not help the player, the player has purely just sabotaged their hand. Although there are certainly edge
 144 cases where this may not be the pure optimum, a more deterministic greedy-like strategy would be an
 145 appropriate approximation for the final round, allowing for dramatically improved computational
 146 efficiency for a relatively low performance loss.

147 For instance, suppose the player is presented with the following space:

$P : 10$ Spades, 9 Clubs
 $D : 7$ Diamonds, 7 Clubs, 4 Hearts, 2 Spades.

148 It is purely nonsensical for the player to block the dealer by specifying a 7 or 3, for instance, as the
 149 dealer would, at worst, have a pair of 7s and the player would just have a high card (note that blocking
 150 cards that also help the player are still considered). With this domain in mind, the optimal range for
 151 the large majority of runouts will simply approximate the greedy strategy for the player to obtain a
 152 high hand ranking.

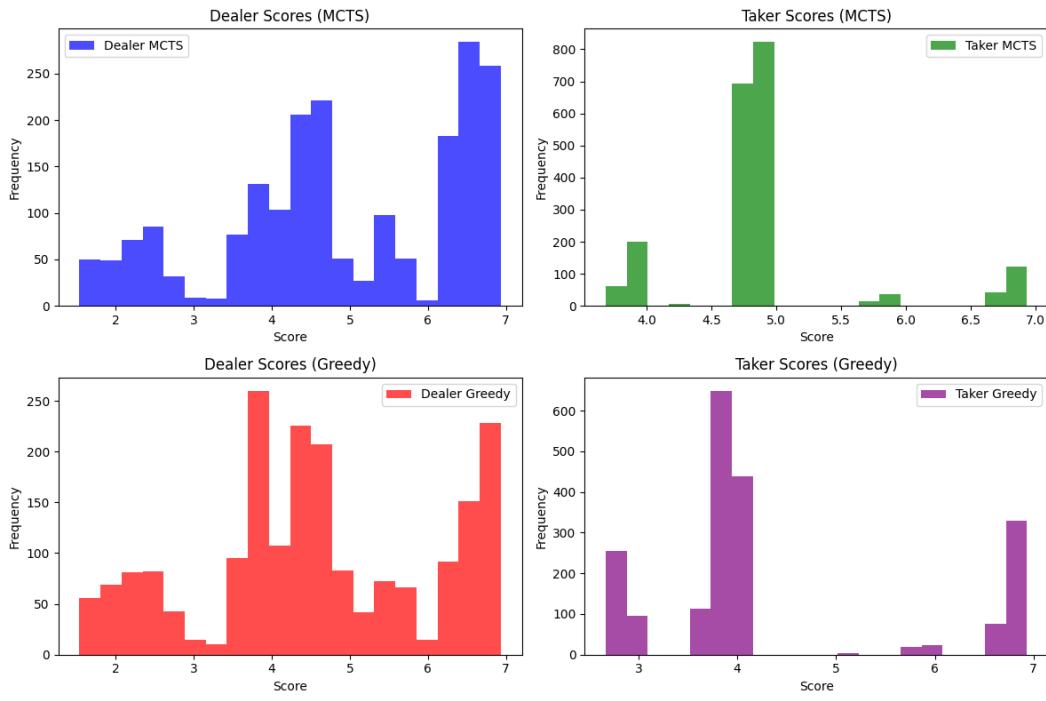
153 4 Results

154 Using parallelization to speed up our simulation process, we ran
 155 2000 simulations using our MCTS-inspired algorithm and a naive
 156 greedy strategy (a strategy that directly goes for triples, flushes,
 157 or straights, see driver code under “Baseline Strategy”), finding
 158 that the player wins about **50.5%** of the time using our modified
 159 MCTS algorithm versus only **39.15%** of the time using a greedy
 160 strategy, a dramatic improvement in win percentage.

Scoring System

1. **Three of a Kind** (base score of 6)
2. **Straight Flush** (base score of 5)
3. **Straight** (base score of 4)
4. **Flush** (base score of 3)
5. **One Pair** (base score of 2)
6. **High Card** (base score of 1)

161



162

163 For an analysis of the simulations themselves, the dealer scores are higher and more clustered towards
 164 the upper range with our modified MCTS algorithm compared to the naive greedy strategy. Such a
 165 trend indicates that our modified MCTS algorithm is slightly more picky than the greedy strategy in
 166 its ranges—although this results in the dealer acquiring more cards and stronger hands, our algorithm
 167 still demonstrated an increase in the win percentage overall, indicating an improvement in the balance
 168 between player and dealer strength; although we allowed the dealer hands to become marginally
 169 stronger, the improvement in the player hands made the algorithm net beneficial to the player.

170 Indeed, looking at the player scores, the player tends to be more tightly clustered around decently
 171 strong hands—predominantly straights—with our amended MCTS algorithm compared to the greedy
 172 algorithm which more often obtains flushes or worse. Interestingly, the greedy algorithm also
 173 manages to obtain three-of-a-kind type hands, the strongest category in the ranking, more often than
 174 our modified algorithm, demonstrating that simply going for player hand strength alone while being
 175 ignorant of the dealer’s strength is detrimental (as those times when the player got a triple, it seems
 176 many times the dealer got a better triple). Again, this plot demonstrates the importance of our starting
 177 design principles—it is not sufficient to only consider the player’s hand strength in this game, but to
 178 also consider the interactions between player and dealer as they evolve through the rounds.

179 5 Extension: 5-Card Poker

180 The 5-card poker variant introduces additional complexity due to the larger state space and adjusted
 181 scoring priorities. This extension was designed to test the adaptability of the MCTS-based strategy
 182 and explore how the optimal subset selection shifts when more cards are involved and there is more
 183 granular scoring.

184 5.1 Modifications in Implementation

185 1. **Iterative Hand Refinement:** Later rounds use MCTS to dynamically adjust the strategy
 186 based on the evolving game state. The algorithm prioritizes subsets that enhance the
 187 probability of achieving high-value hands like flushes or straights while minimizing the
 188 dealer’s opportunities.

189 2. **Pruning for Computational Feasibility:** Due to the larger state space, we used more
190 aggressive pruning techniques. Subsets that neither contribute to building a strong hand nor
191 block the dealer were excluded. This ensures that computational resources focus on the
192 most promising actions.

193 The first round is equivalent to the three card version, so similarly, we find that the optimal
194 strategy (which is confirmed by running MCTS on the initial state in the game tree, when
195 the dealer and taker have no cards) is to greedily the highest ranks $10, J, K, Q, A$.

196 For subsequent rounds, we ran our MCTS algorithm under two pruning strategies.
197 The first strategy restricted the set of possible actions at a node by taking
198 a selection the remaining cards (not in the dealer or player's hand) and returning
199 $\min(20, \text{number of selected remaining cards})$ subsets of the remaining cards. The set of
200 remaining cards was restricted to be the set of "blocking" cards, which we defined to be
201 cards where the suit or rank of that card is represented at least once in the dealer's hand and
202 "helping" cards, where the suit or rank is represented at least once in the player's hand. This
203 assumes, based on domain knowledge, that is preferable for the player to request a larger
204 subset of cards.

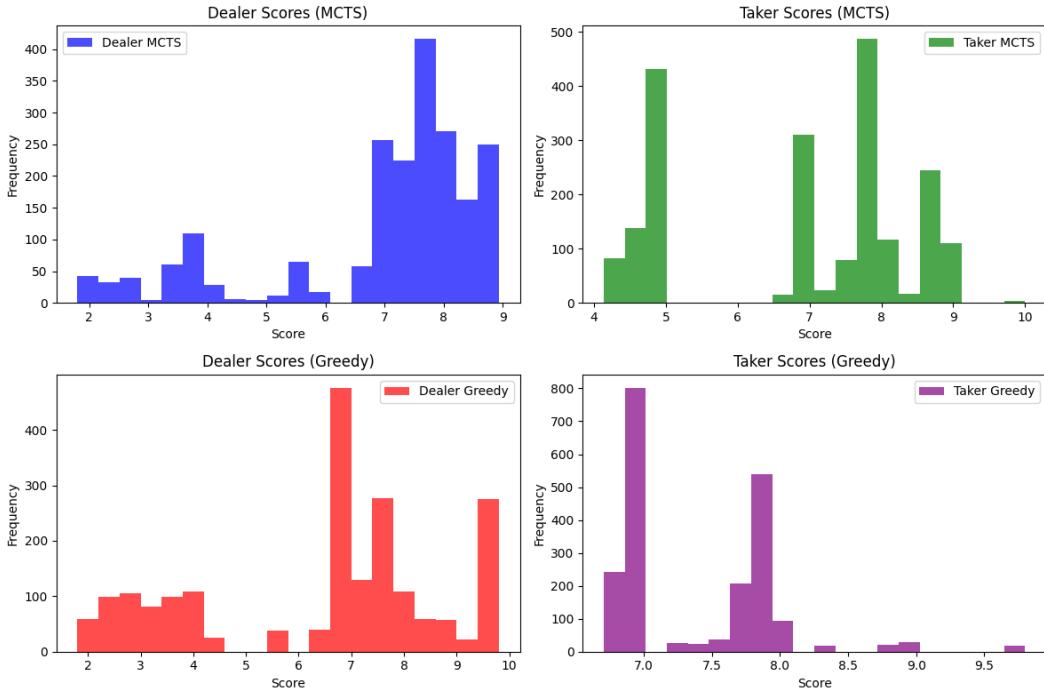
205 The second pruning strategy aims to leverage the symmetry and suits and ranks. At each
206 iteration, the MCTS explores a subtree of the game that we hypothesized to be optimal
207 based on the initial results from the first strategy. At each round, the MCTS restricts the
208 action space to consider all possible suit-rank combinations in the current dealer hand.
209 For example suppose the player has a 10 of Spades after the first round. Then the MCTS
210 algorithm will choose between actions requesting $(S, 10)$ (requesting any spade and a 10),
211 $(10,)$ (requesting a card of rank 10) and $(S,)$, requesting any spade. Likewise, say the player
212 has a Q Spades and 10 Spades after the second round. The player now has suits S and ranks
213 10 and Q represented in their hand. Then the MCTS algorithm will select between actions
214 $(S,)(S, 10), (Q,), (Q, 10), (Q, S), (10,)$.

215 3. **Score Evaluation:** The 'convert_hand_to_value' function was adapted to evaluate 5-card
216 hands with greater granularity. Fractional components, such as tie-breaking contributions
217 from secondary kickers, were particularly important in distinguishing between hands of
218 similar ranks. From a given node in the search tree, for a given state s , the MCTS algorithm
219 chooses an action a to explore using the follower UCB (upper-confidence bound) score.
220 The preceding state is chosen based on a random simulation of one round of the game. For
221 example, if the dealer hand is a 10 Jacks. Then based for a given action (i.e. specifying
222 a set of cards to request), we expand the current search tree to a child node by randomly
223 simulating a round of the Ranger game. In this case, if the action is $(10,)$ (request a 10),
224 then according to a random simulation, the preceding state might be the player hand having
225 10 Jacks and 10 of hearts with some dealer hand. We have a child node representing the
226 state. To evaluate a node, we used a standard UCB bound:

227
$$\text{UCB}(s, a) = \frac{\text{wins}_{\text{child}}}{\text{visits}_{\text{child}}} + C \cdot \sqrt{\frac{\log(\text{visits}_{\text{state}})}{\text{visits}_{\text{child}}}}$$
, where $\text{wins}_{\text{child}}$ is the number of times the player
228 has won from the child state, $\text{visits}_{\text{child}}$ is the number of times the algorithm has explored
229 the child, and $\text{visits}_{\text{state}}$ is the number of times the algorithm has explored the current state.

231 This UCB policy is also used for the third-card version. However, for the five-card version
232 instead of using the number of times a player won to evaluate a node, we instead use the
233 number of times a player has reached a score $> \alpha$ from some node for computational
234 reasons. In later rounds of the game, the dealer may have many cards. To determine whether
235 the player won or not entails computing the best 5-card hand that the dealer can get which
236 requires enumerating over $\binom{n}{5}$ subsets if the dealer has n cards. When $n > 40$, $\binom{n}{5}$ is a
237 practically large number, and in contrast to the three card games, $\binom{n}{3} \ll \binom{n}{5}$. In our final
238 implementation, we set $\alpha = 7.5$ by observing the performance of different values of α over
239 a few simulations.

240 **5.2 Results**



241

242 In implementation, our algorithm sometimes runs into odd local
 243 optima (e.g. settling on a singular non-relevant card, likely due
 244 to the noise from the simulations being too high—we could solve
 245 this theoretically with more iterations, but that would require more
 246 computational resources to be feasible). With a slight amount of
 247 human intervention (simply asking it to generate a more reason-
 248 able range), we obtain the following 2000 simulations. With the
 249 rerunning of the incorrect ranges outlined above, the algorithm
 250 obtains a win percentage of about **48.28%**, which, in comparison
 251 to our implementation of the greedy algorithm, is a little bit worse
 252 (our greedy algorithm achieves a win percentage of **59.54%**), in-
 253 dicating that the algorithm still has yet to handle the larger state
 254 space well enough for us to reach the greedy algorithm’s performance. However, we do see traces
 255 of similar results from our analysis of the simpler three-card version of the game. Our modified
 256 MCTS algorithm is generally more picky than the greedy algorithm (although we get some iterations
 257 where the algorithm gets a weak hand like 4-5, likely due to the identification of the incorrect optima
 258 as explained above), the bulk of the iterations actually obtain more four-of-a-kind type hands in
 259 comparison to the greedy algorithm, perhaps indicating a slightly higher degree of the MCTS-based
 260 algorithm being slightly pickier than the general naive strategy when working as intended (this is also
 261 supported by the dealer scores in the MCTS-based algorithm being more biased upward than in the
 262 naive greedy case).

Scoring System

1. Royal Flush (base score of 10)
2. Straight Flush (base score of 9)
3. Four of a Kind (base score of 8)
4. Full House (base score of 7)
5. Flush (base score of 6)
6. Straight (base score of 5)
7. Three of a Kind (base score of 4)
8. Two Pair (base score of 3)
9. One Pair (base score of 2)
10. High Card (base score of 1)

263 **6 Extension: 2-Player Poker**

264 The two-player extension of Ranger introduces direct competition and new rules that require dynamic
 265 decision-making. To address balance issues, increase strategic depth, and ensure that players don’t
 266 end up with large hands, we adapted how cards are allocated. If a card is drawn and matches the
 267 active player’s specified subset, that card is given to the player, and the turn ends. If no match occurs,
 268 up to a maximum of three cards are drawn and given to the opponent. This rule also removes the

269 guarantee that players receive a fixed number of cards per round, requiring a more dynamic and
 270 state-dependent strategy.

271 **6.1 Modifications in Implementation**

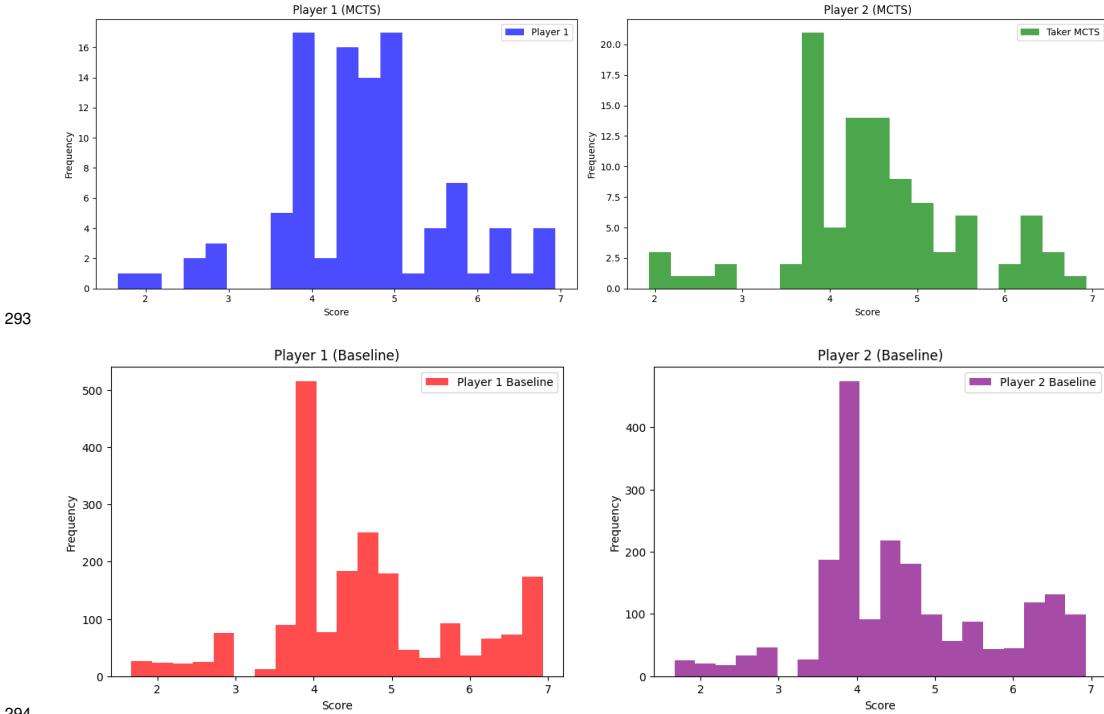
272 **1. State-Focused Subset Recommendations:** Given the uncertainty in hand sizes as well as
 273 the possibility of Player 2 having cards before their first turn, the algorithm for the 2-player
 274 game dynamically adapts to the current state of the game. Instead of hard coding strategies
 275 solely based on the round number, our algorithm dynamically adapts its recommendations
 276 based on the player’s current hand and the opponent’s potential hand.

277 • **Early and Mid Rounds:** In early to mid rounds, if a player’s hand is empty, the algorithm
 278 recommends a broad subset consisting of high-value ranks (10 → A) to maximize
 279 potential outcomes. Otherwise, the algorithm balances improving the player’s hand
 280 and blocking the opponent’s potential combinations. Subsets are dynamically pruned
 281 to 1) include cards that help the player’s hand (e.g., completing a flush or straight) and
 282 2) include cards that block the opponent’s potential combinations (e.g., preventing a
 283 straight or triple). However, blocking is considered secondary to helping the player’s
 284 hand and is included only when it aligns with helping the player.

285 • **Final Rounds:** In the last round, the algorithm exclusively targets cards that improve
 286 the player’s hand. Blocking the opponent is deprioritized, as it would limit the player’s
 287 ability to maximize their final hand strength. This approach ensures the player focuses
 288 on achieving the strongest possible hand rather than exploring options that no longer
 289 provide value.

290 **6.2 Results**

291 To test the effectiveness of our MCTS algorithm, we compared 100 simulations of our MCTS
 292 algorithm (limited by computational constraints) to 2000 simulations of a baseline greedy algorithm.



295 With our MCTS-based algorithm, Player 1 won **60%** of the time (60 wins), Player 2 won **39%** of
 296 the time (39 wins), and there were ties 1% of the time (1 time). With the baseline greedy algorithm,

297 Player 1 won **54.35%** of the time (1087 wins), Player 2 won **45.2%** of the time (904 wins), and there
298 were ties 0.45% of the time (9 times).

299 The baseline strategy produces tightly clustered scores (4-5) which makes sense since it is deterministic in nature (both players aim for straightforward hands like three of a kinds or flushes). In contrast,
300 the MCTS-based approach shows a wider spread of scores, particularly for Player 1, indicating
301 dynamic adaptability and a balance between exploration and exploitation. This allows Player 1 to
302 leverage the first-move advantage more effectively, with higher frequencies of scores above 5 compared
303 to the baseline and a increased win percentage from 54.35% to 60%. Player 2’s performance
304 under MCTS shows increased variance, with occasional high scores (6) but also a greater presence
305 of lower scores (2-3). This suggests that the strategy incorporates blocking more effectively but
306 sometimes sacrifices hand strength as a trade-off.

308 These preliminary results seem to indicate that the 2-player game is a game more focused on initiative
309 as opposed to reactivity–Player 1 getting to specify ranges first seems to perform better than Player 2.
310 In our continued work, we aim to study whether or not the second player can indeed deviate in their
311 behavior to play in reaction to the first player, perhaps through a self play-type algorithm.

312 7 Next Steps and Future Work

313 Going forward, we want to conduct a more nuanced comparison of MCTS and naive strategies
314 to understand the significance of the difference in win rates, and explore parameter fine-tuning to
315 see how it could impact the win rates and computational efficiency. Additionally, our analysis of
316 the 5-card variant is somewhat surface level, and we want to explore this and other variants (like
317 multi-player game play) in more depth.

- 318 1. **Overarching Assumptions:** A fundamental assumption we made (our second design
319 principle) is that a player would only consider cards helping their own hand or blocking the
320 dealer, a semi-greedy-esque line of thinking that may have biased our algorithm to prefer
321 ranges that coarsely emulate the greedy algorithm. Perhaps there is a way to think about the
322 future where a card doesn’t directly block the dealer nor help the player but could feasibly
323 be included in the player’s range in a given round.
- 324 2. **Three Card Base Game:** In addition to the pruning and symmetry arguments we used
325 to guide our simulations, our overarching algorithm made a few simplifying assumptions
326 for the sake of computational efficiency with our current resources. In particular, as the
327 second round was already computationally straining, implementing a complete simulation
328 of the third and final round as an additional layer would have been infeasible with our
329 current timeline, prompting us to implement our more greedy-based approximation. Further
330 study would involve a more complete investigation into the third round to ensure that our
331 greedy-based approximation is indeed sound.
- 332 3. **Five Card Game:** Like in the base three card game of Ranger, we also assume that the
333 player should consider cards that greedily help them acquire the best possible hand. We
334 also assume that the player should use a strategy only considering the cards that most help
335 its hand in the current round. Future work could consider how we can incorporate more
336 forward-looking strategies in earlier rounds by thinking of ways to prune the action space
337 in a less greedy manner. In addition, in our implementation, we essentially use the same
338 pruning strategy across round, so we could consider what happens if we evolve the pruning
339 of the strategy space across rounds.
- 340 4. **2-Player Game:** Future improvements could focus on smarter, opponent-aware strategies,
341 such as refining pruning techniques, adding long-term planning, and exploring ways to
342 balance the advantage of going first. Since Player 1 consistently outperforms Player 2 due to
343 the initiative of specifying ranges first, future work could explore more adaptive strategies
344 for Player 2, such as reactive blocking or self-play-type algorithms. Alternative rule changes,
345 like giving Player 2 additional advantages, could also help improve fairness and balance.