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Abstract

This study investigates the relationship between
urban tree characteristics and air quality indica-
tors across 46 cities. We employ various regres-
sion models to analyze the predictive power of
tree-related variables on different Air Quality In-

dex (AQI) values.

Our dataset is comprised of the number of trees,
number of unique species, proportion of natu-
rally occurring versus introduced trees, and tree

density, alongside overall AQI and specific val-
ues for CO, Ozone, NO2, and PM2.5.

Our analysis includes a comprehensive suite of
regression models: a full linear model as the
baseline, a full interaction model, stepwise mod-
els with interaction terms (forward, backward,
and both), LASSO, Ridge, decision trees, and
random forest. All models log-transform the re-
sponse variable to address the right-skewed dis-
tribution of AQI values. This research aims to
elucidate the extent to which urban tree charac-
teristics can serve as bioindicators of air quality,
contributing valuable insights to urban planning
and environmental management.

1 Introduction

Urban trees are increasingly recognized for their envi-
ronmental and public health benefits, particularly in mit-
igating air pollution. The capacity of trees to act as
bioindicators of air quality forms the cornerstone of this
study. Trees interact with air pollutants in complex ways,
potentially influencing the concentration and distribution
of pollutants in urban areas.

1.1 Motivation

Urban trees serve as vital components of urban ecosys-
tems, offering a multitude of environmental and public
health benefits. Among these, their role in air quality
improvement is particularly significant, especially in the
context of increasing urbanization and associated air pol-
lution challenges. This research delves into the complex
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interactions between urban trees and air pollutants, aim-
ing to quantify and understand these relationships better.
Understanding the relationship between urban trees and
air quality is crucial for urban planners, environmen-
talists, and policymakers. This study aims to provide
empirical evidence to guide effective urban forestry prac-
tices and environmental policies to improve air quality
and public health.

Studying the relationship between urban trees and air
quality is important for many reasons. Trees can absorb
pollutants like carbon monoxide (CO), nitrogen diox-
ide (NO2), ozone (O3), and particulate matter (PM2.5),
which are common in urban environments. By study-
ing these interactions, we can better understand how
different species and densities of trees contribute to re-
ducing pollution levels and mitigating climate change.
Additionally, insights from this study could guide urban
planning, public health policy, and environmental pol-
icy by informing decisions about where and what types
of trees to plant for optimizing the benefits for air qual-
ity. Finally, we hope that our statistical study can lay
the groundwork for further research in environmental
science, particularly in exploring the synergies between
urban greening and pollution control strategies.

1.2 Objective

Our primary objective is to assess the inferential rela-
tionship between various tree characteristics in urban
environments and air quality, as measured by different
AQI values. This approach allows us to explore the po-
tential of trees as natural mitigators and indicators of
urban air pollution. Due to the small size of our dataset,
our goal is to use regression models to help us assess
whether or not there are associations between predictor
and response variables rather than trying to build models
that make accurate predictions.

2 Data and EDA

This section describes the data used in our study, dis-
cussing both predictor (tree data) and response variables
(air quality indicators) as well as the rationale behind



their selection. We will also include in this section the
data cleaning and transformation we did prior to con-
ducting our analysis.

2.1 Data Overview

We required two datasets for our project: a dataset of
tree data and a dataset of air quality data that occurred in
similar cities as the tree dataset. We ultimately sourced
a tree dataset from Dryad, an international open-access
repository of research data, and an air pollution dataset
sourced from Kaggle, an online community of data sci-
entists and machine learning practitioners under Google
LLC.

2.2 Data Selection

The air pollution dataset contained 23464 cities from
all around the globe, with 2872 cities from the
United States. For each city, there were recorded
values for AQI, CO AQI, Ozone AQI, NO2 AQI,
and PM2.5 AQI. The tree dataset only contained 63
cities, all in the US, so we simply chose to use the
data where cities were shared between the tree data
and the air pollution data. The tree dataset con-
tained much fewer cities, but many more columns and
values per city. We eventually narrowed down to
only using the columns scientific_name, native,
longitude_coordinate, and latitude_coordinate
from the tree data, which we used to calculate the num-
ber of trees observed, the number of unique species of
trees, the proportion of native trees (as opposed to intro-
duced trees), and the density of trees in the observed area
per city. We felt that these values were both feasible to
derive from the data and might be most useful for us in
gauging the relationship between trees and air pollution
in cities.

2.3 Maetrics for Air Pollution

To measure levels of air pollution in cities, we look into
common pollutants, including nitrogen dioxide (NO2),
ozone (O3), carbon monoxide (CO), and particulate mat-
ter (PM2.5).

Nitrogen Dioxide, a gas naturally introduced into the
air also forms from cars, trucks and buses emissions,
power plants and off-road equipment. Extensive expo-
sure can worsen respiratory conditions, like asthma, or
contribute to development of asthma and respiratory in-
fections.

Ozone is created by chemical reactions between ox-
ides of nitrogen and volatile organic compounds (VOC),
and differs from the “good” ozone located in the up-
per atmosphere, which protects the earth from UV rays.

Ground level ozone, in particular, can lead to respira-
tory health problems, such as reducing lung function
and worsening bronchitis, emphysema, and asthma. The
Ozone molecule affects also negatively impacts vegeta-
tion and ecosystems by damaging sensitive vegetation
during the growing season.

Carbon Monoxide, like nitrogen dioxide, is released
into the air by cars, trucks and other vehicles or machiner-
ies that burn fossil fuel. Breathing in CO can severely
reduce the amount of oxygen transported in the blood
stream to critical organs like the heart and brain.

Atmospheric Particulate Matter, unlike the previous
pollutants, are mixtures of solid and liquid matter in the
air. They are classified as group 1 carcinogen by the
International Agency for Research on Cancer (IARC).
PM2.5 specifically refers to those particles with a diam-
eter of 2.5 micrometers or less.

The overall AQI is calculated by taking the maximum
of the other four air quality values. This is typically
PM2.5 for most cities with the exception of a few that
have Ozone as the maximum instead.

2.4 Variable Summary and Hypothesized
Importance

The first variable we chose to include in our final dataset
is the number of trees since the number of trees is an
integral factor in mitigating air pollution. In order to
calculate the number of trees in each city, we found the
number of rows in each city’s dataset. A greater number
of trees in an area means a larger collective surface area
that can absorb and filter air pollutants such as carbon
monoxide (CO), ozone (O3), nitrogen dioxide (NO2),
and particulate matter (PM2.5) and so, we hypothesized
that number of trees and AQI are negatively correlated.

The city datasets included a column specifying the
species of each tree and so, we theorized that the num-
ber of unique tree species in a particular city could have
an interesting correlation with that city’s AQI value. Dif-
ferent tree species have varying abilities to absorb and
process different pollutants. For example, some species
are more effective at absorbing specific gasses like CO2,
NO2, or O3, while others are better at intercepting partic-
ulate matter. A diverse array of trees ensures a broader
range of pollutants can be mitigated, but at the same
time, a diverse tree ecosystem could also suggest that
there is not a strong correlation with any of the AQI val-
ues since it does not specialize in reducing any one of
the pollutants measured by the AQI.

Naturally occurring trees, being native to the area,
are generally well-adapted to the local climate, soil con-
ditions, and ecological interactions and therefore, are
often more efficient in using local resources such as wa-



ter and nutrients compared to non-native species. This
efficiency can translate into better growth and larger
biomass, which is beneficial for air pollution absorption
as larger trees with more leaves can capture more pol-
lutants. Because of this, we wanted to explore whether
the proportion of naturally occurring trees could provide
interesting insights on correlation with air quality. Our
original city datasets included data about whether each
tree was native to that region or introduced, so we calcu-
lated the proportion by dividing the number of naturally
occurring trees by the total number trees with non-NA
values for that column.

Similar to the number of trees, the density of trees in
a city would also have a significant impact on air quality
as a higher density implies a greater leaf surface area.
Further, the density of trees accounts for the area from
which the trees are sampled and can provide a more
insightful analysis into the impact of trees on air quality.
Overall, we hypothesize that density and the AQI values
will be negatively correlated.

A consideration into our four predictors is that the
original tree datasets do not necessarily sample all trees
present in a city, meaning that our values for number
of trees, number of unique tree species, proportion of
naturally occurring trees, and tree density might not ac-
curately reflect a city’s actual density. Additionally, the
number of trees and density of trees might be correlated,
especially given that we use the number of trees in our
calculation of density. We theorize that this will affect
our results.

2.5 Data Cleaning

In our data cleaning efforts, we first selected only cities,
where there were no NA values in the specified 4 columns
(some datasets contained only NA values in certain
columns). After isolating these cities, we ended up with
46 cities.

Next, the tree dataset actually came as 63 CSV files,
one for each city. In each CSV file was the recorded data
of all trees in that city. We do not care about the specific
trees within an area or the data of the specific trees.
Instead, we cared about summary statistics for a given
city such as the “density” of trees and the proportion of
naturally or introduced trees.

To do this, we created a function that looks at each
city dataset and adds the city name, number of trees
sampled, number of unique tree species, proportion of
naturally occurring trees, observed area, and density of
the observed area to a singular dataframe.

In our density calculation, we had some difficulty con-
verting latitude and longitude to area. We tried a variety
of packages and calculations to convert between coor-
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Figure 1: Response variable distributions

dinates and area, but some produced a lot of NA val-
ues. Our final cleaning procedure involves converting
the coordinates into distance from the minimum lati-
tude/longitude coordinates in a city, then using a function
which finds the area of the polygon formed by the con-
vex hull of the points. Some of these area values didn’t
seem to line up with what we would expect based on
the known size of the cities. After further inspection of
the raw data for a few cities, it seems that the calculated
area is highly dependent on how spread out the trees are.
Stockton, for example, had very high area values and has
trees that are grouped into two very spread out clusters
while a city like Tampa, which had a more reasonable
area value, has trees evenly spread out in the range of
longitude and latitude values (see Appendix Figures 5
and 6).

2.6 Data Exploration
2.6.1 Response Variable Distributions

Figure 1 shows histograms of each of the response vari-
ables considered, including overall AQI, carbon monox-
ide (CO), ozone, nitrogen dioxide (NO2), and fine partic-
ulate matter (PM 2.5) for the cities included in our final
combined dataset. The histograms for carbon monox-
ide and nitrogen dioxide are very right skewed. Since
linear regression models assume normality, we will be
log transforming the response variable for the models
predicting CO and NO2.

Additionally, while most air quality values span a
large range and take on many distinct values, the car-
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Figure 2: Predictor variable distributions

bon monoxide values only seem to take on integers from
0 to 4. Carbon monoxide rarely occurs in large quanti-
ties outdoors, which may explain why the scale is much
smaller for CO than the other air quality variables.

2.6.2 Basic Predictor Variable Statistics

Figure 2 shows histograms of each of the predictors vari-
ables — including number of trees, number of unique
species, proportion of naturally occurring trees, and den-
sity. The number of trees and the density variables are
right skewed. In particular, for density all the obser-
vations have density below 20000 with the exception of
only a few outliers. This may be due to the complications
in calculating density mentioned in the data cleaning sec-
tion. The number of unique species and the proportion
of native species are also slightly right skewed, but not
as severely. Although the skew of these variables indi-
cates that we may want to transform them, in order to
maintain the interpretability of our models, we will not
be transforming any of the predictors especially since
some of our response variables will be transformed.

2.6.3 Exploratory Data Analysis Plots

Before we start to fit regression models, we want to get
a sense of the relationship between the tree and air qual-
ity variables. Figure 3 shows each of the predictor tree
variables plotted against AQI values. Additional fig-
ures showing the relationship with the other response
variables can be found in the appendix (Figures 7-10).
There seems to be some weak correlations between the
variables, but no strong relationships between any indi-
vidual tree variables and pollution at a first glance. This
motivates the need to test more complex models to see
if there are certain combinations of tree predictors that
can predict air quality better than one predictor alone.
The different regression techniques might also highlight
some correlations or interactions that cannot be seen
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Figure 3: Scatter plots of tree predictors against AQI

from the scatter plots alone.

The density outlier is also very apparent in the scatter
plots, which could potentially skew our analysis. How-
ever, given that our dataset is already very small, we did
not want to remove this outlier as that would decrease
our sample size, as well as our inferential and predictive
power, even more.

3 Models
3.1 OLS Regression Models

For each of the OLS Regression Models below, we re-
gressed each of the different air quality index values as
the response variable against the various tree data pre-
dictor variables.

1. baseline is a linear model that takes in ev-
ery predictor variable for trees: NumTrees,
NumUniqueSpecies, NaturalProportion,
and Density. These predictors were used in
five models for each of the outcome variables
AQI.Value, CO.AQI.Value, Ozone.AQI.Value,
NO2.AQI.Value, PM2.5.AQI.Value. At its
core, baseline is simply a standard linear model
with multiple predictor variables. Due to a
skew in the outcome variables CO.AQI.Value and
NO2.AQI.Value, we substituted in the linear model
formula 1og(CO.AQI.Value) for CO.AQI.Value
and 1og(NO2.AQI.Value) for NO2.AQI.Value.
The linear model formulas were of the form
1m(AQI.Value NumTrees+NumUniqueSpecies+
NaturalProportion+Density,data=data)

2. interaction is a linear model taking in every
predictor variable for trees as well as all two-way
interactions between the predictor variables,
and outcome variable as each air quality index
value. Again, due to a skew in the outcome
variables CO.AQI.Value and NO2.AQI.Value,



we substituted in the linear model formula
log(CO.AQI.Value) for CO.AQI.Value and
log(NO2.AQI.Value) for NO2.AQI.Value.
The linear model formulas were of the form

Im(AQI.Value™ (NumTrees+NumUniqueSpecies+

NaturalProportion+Density) "2,data=data)

3. forward is a step-wise linear model.  The
lower model is an intercept model of the form
Im(AQI.Value 1, data = data) where we
start the step-wise iteration from.

4. backward is a step-wise linear model. The upper
model is the two-way interaction model, where
we start the step-wise iteration from.

5. both is a step-wise linear model. The lower
model is an intercept model of the form
Im(AQI.Value 1, data = data) and the up-
per model is the two-way interaction model.
We start the iteration at the baseline model.

3.2 Penalized Linear Models

1. baseline_ridge is a penalized linear model. At
the lambda_min value, we cross validated the model
reporting the train RSME and test RMSE. We will
use these RMSE values computed for each outcome
variable against the RMSE values for the LASSO
model.

2. baseline_LASSO is a penalized linear model. At
the lambda_min value, we cross validated the model
reporting the train RSME and test RMSE. We will
use these RMSE values computed for each outcome
variable against the RMSE values for the Ridge
model.

3.3 Tree-based Regression Models

In our exploratory data analysis, we did not see strong
linear relationships between the predictor and response
variables. A tree-based regression model may serve as
a suitable alternative in this case, since it takes a non-
parametric approach that does not assume linearity or
other underlying patterns in the data. Because of the
small size of our data, our primary objective in fitting
these tree-based models is to determine the importance
of our predictor variables in predicting air quality rather
than creating models that would work well on predicting
out-of-sample data. For each response variable (AQI,
CO, Ozone, NO2, and PM2.5), we fit a decision tree and
a random forest.

1. Decision trees: Initially, the decision tree parame-
ters were found through cross validation, but this of-
ten led to trees with no splits. Therefore, each final

decision tree had parameters cp=0, maxdepth=5.
This allowed for maximal complexity to give us
more information about how the tree predictors re-
late to each pollution variable.

2. Random forest: For each random forest, we used
3-fold cross validation to tune the mtry parameter.
The optimal mtry based on RMSE was used for the
final model.

4 Results
4.1 OLS Regression Models

After fitting our linear models to predict each of the five
air pollution variables, we summarized our findings in
Tables 1-5.1 For each of the five AQI variables, we show
the formula used for each linear model, the p-value,
RMSE, and AIC. Notably, all of the p-values are not
significant — as we hypothesized due to our tree dataset
being incomplete.

4.1.1 Baseline Assumptions

For the linear models, we assume independence, con-
stant variance, linearity, and normality. We checked
these assumptions for our baseline model predicting
AQI.Value. A similar process could be repeated for the
other response variables. Given that each observation is
a different city, independence seems plausible, although
there may be some dependencies in the air quality values
if there are cities nearby each other. Looking at the resid-
uals vs. fitted values plot in the appendix (Figure 11), the
residuals are quite symmetrically distributed around 0,
so linearity seems plausible. Constant variance seems to
be violated as there is much less variance for higher fitted
values than lower ones. This may be due to our small
sample size and the slight right skew of the response
variable. The QQplot (See Appendix Figure 12) shows
that the residual distribution follows a normal distribu-
tion quite closely, with the exception of some outliers on
the tail, so overall the normality assumption seems to be
met.

4.1.2 Findings

Looking at Table 1, we can see that the model with the
lowest p-value for AQI.Value is found by both forward
and bidirectional stepwise regression. These models use
tree density and the number of trees as predictors with
coefficient estimates of 3.240e-04 and 3.531e-05, and
p-values of 0.119 and 0.138 respectively. Intuitively,
this means that an additional tree per square kilometer

1For readability purposes, we abbreviated the predictor variables

as follows: NT = NumTrees, NUS = NumUniqueSpecies, NP =
NaturalProportion, D = Density.



AQIL. Value

Model Formula p-value | RMSE AIC
Baseline AQI~NQ+NUS+NP+D 0.3504 | 22.5052 | 429.007
Interaction AQI ~ (NT + NUS + NP + D)? 0.5244 | 21.1069 | 435.106
Stepwise (Forward) AQI ~D + NT 0.1248 | 22.6047 | 425.413
Stepwise (Backward) AQI ~NUS + NP + D + NUS:D + NP:D 0.3047 | 22.0657 | 429.192
Stepwise (Both) AQI~NT+D 0.1248 | 22.6047 | 425.413
Table 1: Results for linear models predicting AQI value
CO.AQl.Value
Model Formula p-value | RMSE AIC
Baseline log(CO) ~NT + NUS + NP +D 0.6318 | 2.04158 | 208.205
Interaction log(CO) ~ (NT + NUS + NP + D)? 0.9396 | 1.99527 | 218.094
Stepwise (Forward) log(CO) ~ 1 — 2.10508 | 203.023
Stepwise (Backward) log(CO) ~ 1 — 2.10508 | 203.023
Stepwise (Both) log(CO) ~ 1 — 2.10508 | 203.023
Table 2: Results for linear models predicting carbon monoxide value

Ozone.AQI.Value
Model Formula p-value | RMSE AIC
Baseline Ozone ~NT + NUS + NP+ D 0.5248 | 10.4057 | 358.039
Interaction Ozone ~ (NT + NUS + NP + D)? 0.7049 | 9.8511 | 364.999
Stepwise (Forward) Ozone ~ NP 0.1658 | 10.5741 | 353.516
Stepwise (Backward) Ozone ~ NP 0.1658 | 10.5741 | 353.516
Stepwise (Both) Ozone ~ NP 0.1658 | 10.5741 | 353.516

Table 3: Results for linear models predicting ozone value

NO2.AQl.Value
Model Formula p-value | RMSE AIC
Baseline log(NO2) ~NT + NUS + NP+ D 0.7154 | 2.3967 | 222.962
Interaction log(NO2) ~ (NT + NUS + NP + D)? 0.9549 | 2.3398 | 232.748
Stepwise (Forward) log(NO2) ~ 1 — 24578 | 217.275
Stepwise (Backward) log(NO2) ~ 1 — 2.4578 | 217.275
Stepwise (Both) log(NO2) ~ 1 — 2.4578 | 217.275

Table 4: Results for linear models predicting nitrogen dioxide value

PM2.5.AQl.Value
Model Formula p-value | RMSE AIC
Baseline PM2.5 ~NT +NUS+NP+D 0.3315 | 23.5087 | 433.021
Interaction PM2.5 ~ (NT + NUS + NP + D)? 0.5025 | 22.0235 | 439.016
Stepwise (Forward) PM2.5 ~D + NT 0.1228 | 23.6489 | 429.568
Stepwise (Backward) PM2.5 ~NUS + NP + D + NUS:D + NP:D 0.2954 | 23.0664 | 433.273
Stepwise (Both) PM2.5 ~NT +D 0.1228 | 23.6489 | 429.568

will increase AQI by 3.240e-04 holding all else constant
and one additional tree will increase AQI by 3.531e-05

Table 5: Results for linear models predicting PM2.5 value

holding all else constant.

For CO.AQI.Value, both our baseline and full in-




teraction models had very high p-values: 0.6318 and
0.9396 respectively. Interestingly, all three of the step-
wise models chose the intercept model as the best model
due to none of our predictors being very good at predict-
ing carbon monoxide air pollution. As previously stated,
this is likely due to our dataset being insufficient.

Looking at Table 3, we can see that the model with
the lowest p-value for Ozone . AQI.Value is found by all
three of the stepwise regression approaches. This model
found that only using the proportion of naturally occur-
ring trees to predict Ozone . AQI.Value leads to the best
fitted model. The coefficient for proportion indicates that
increasing the proportion of naturally occurring trees in
a city from 0% to 100% will increase the ozone AQI by
7.883. This is counterintuitive to our original hypothesis
as we believed that more naturally occurring trees would
lead to less air pollution due to trees being better adapted
to their environment. This result might be explained by
cities with more introduced trees putting more effort into
air pollution reduction programs.

Similar to CO.AQI.Value, both our baseline and full
interaction models for NO2.AQI.Value had very high
p-values — 0.7154 and 0.9549 respectively. Once again,
all three of the stepwise regression approaches chose the
intercept model as the best model, implying that none
of our predictors are significant in predicting nitrogen
dioxide pollution.

Lastly, for PM2.5.AQI.Value, we can see that the
model with the lowest p-value is found by both for-
ward and bi-directional stepwise regression. This model
also found that density and the number of trees are the
best predictors for PM2.5.AQI.Value with coefficients
being 3.370e-04 with a p-value of 0.121 and 3.750e-
05 with a p-value of 0.133 respectively. Intuitively,
this suggests that an additional tree per square kilometer
increases PM2.5.AQI.Value by 3.370e-04 holding all
else constant and that an additional tree will increase
PM2.5.AQI.Value by 3.750e-05 holding all else con-
stant.

4.1.3 Best OLS Models

Across all five of the air pollution values, the full interac-
tion model had the lowest RMSE. This can be explained
by the full interaction model including all of our pre-
dictors as well as all of the interactions and potentially
being overfit due to its complexity. Additionally, both
the forward and bidirectional stepwise approaches al-
ways resulted in the same model which had the lowest
AIC for each of the response variables. The consistency
of model selection in both approaches strengthens the
reliability of this model as it seems to have a good trade-
off between model simplicity and the ability to explain

the variation in the response variables.

4.2 Penalized Linear Models

4.2.1 Findings

A summary of the RMSEs and optimal A values in
LASSO and Ridge regression can be found in tables 6 and
7. Given the values, we note that the optimal lambda val-
ues for the LASSO model are generally lower than those
for the Ridge model. This indicates that LASSO regu-
larization (shrinking coefficients towards zero) is applied
more lightly, which suggests that the tree predictors may
be indeed relevant to predicting AQI values.

In the LASSO model, the RMSE for NO2 and CO on
the test set is very close to the training set, suggesting that
the model generalizes well for these pollutants. However,
when choosing between the models, if the goal is to min-
imize test error, the LASSO model is more compelling
for AQI, Ozone, and NO2 since it has a lower test RMSE
in comparison to the Ridge model for these pollutants.

In contrast, for the Ridge model, the discrep-
ancy between training and test RMSE is quite pro-
nounced for AQI and PM2.5. This could be a sign
of overfitting as the model may be capturing noise
along with the actual signal in the training datas—
|||et, whichdoesnotgeneralizetothetestdataset.

Appendix Figures 13 and 14 are examples of the co-
efficient values as we vary A for PM2.5 as the response
variable. The plots for other response variables look
very similar as well. We can see that the natural propor-
tion is the variable that is the last to be shrunk for both
Ridge and LASSO, indicating that out of the predictors
we have, natural proportion is the best for predicting air
quality.

Overall, the results indicate that the LASSO model
better balances model complexity and performance for
several pollutants, as indicated by the optimal and RMSE
values.

4.3 Tree-Based Modeling

A summary table for the RMSEs of the decision trees
and random forests (as well as the tuned mtry parameter
for each forest) can be found in Table 8. mtry refers
to the number of variables the random forest considers
at each split. Since there are only 4 total predictors,
the models with log-transformed responses consider all
predictors at every split while the models with original-
scale responses only consider 2 variables at each split.
The RMSE values for the decision trees are all very
similar to the linear models. However, the random forest
RMSE values are much lower. This makes sense because
random forests utilize bootstrapping, and given our small
sample size, being able to artificially create more data to



Ridge Model

Response || Optimal A | Test RMSE | Train RMSE
AQI 0.498 19.996 23.873
log(CO) 0.0267 5.533 1.241
Ozone 0.225 10.810 10.795
log(NO2) 0.296 8.143 9.025
PM2.5 0.517 21.752 24.807

y LASSO Model
Response || Optimal 4 | Test RMSE | Train RMSE
AQI 0.027 31.798 21.650
log(CO) 0.001 1.182 2.781
Ozone 0.010 5.908 11.581
log(NO2) 0.016 10.358 9.730
PM2.5 0.028 34.573 22.281

Table 6: Results for Ridge model

Table 7: Results for LASSO model

] Decision Tree and Random Forest Models

Response Decision Tree RMSE | Random Forest RMSE | mtry
AQI 21.3659 11.8762 2
log(CO) 1.9622 0.7674 4
Ozone 9.2306 5.4519 2
log(NO2) 2.1913 0.9565 4
PM2.5 22.0012 12.6266 2

Table 8: Results for decision trees and random forest models

fit models on is very beneficial. Fitting many models and
averaging across them also gives the random forest much
more flexibility to capture higher complexity. However,
the random forest model is also very likely overfitting,
which we have no way of verifying without an out-of-
sample dataset.

4.3.1 Decision Tree Structures

For each of the five air quality response variables, a
decision tree was fit with the same transformations that
were applied for the linear models, if applicable.

The decision tree for predicting AQI can be seen in
Figure 4. The top split was on the proportion of naturally
occurring trees. Cities with less than 0.075 proportion
of naturally occurring trees were predicted to have an
AQI of 78, which is higher than the predictions for cities
with natural proportion above the 0.075 threshold. If a
city has natural proportion above 0.075 and more than
60,000 trees, they are predicted to have the lowest AQI
of 52. These results intuitively make sense in that having
more trees, particularly naturally occurring trees would
be beneficial to better air quality.

Decision trees for the remaining four variables can
be seen in the appendix (Figure 15). The first split for
PM2.5 matches the first split for AQI. Given that AQI
is determined by the maximum value of the other four
air quality indicators and PM2.5 is almost always the
largest value, it makes sense that the PM2.5 tree would
look very similar to AQI.

The first split for the tree predicting Ozone is natural
proportion with cities having proportion below 0.11 pre-
dicted to have lower Ozone values. This result is counter-

AQl Decision Tree

64
n=46

NaturalProportion >= 0.075-{no }——
60
n=36
NumTrees >= 60e+3
66
n=21

NaturalProportion < 0.71

62 74
n=14 n=7

Figure 4: Decision tree predicting AQI

52 78
n=15 n=10

intuitive as we would expect places with more naturally
occurring to have better air quality, but this matches
the result from the OLS models where ozone pollution
and natural proportion had a positive coefficient. One
possible explanation for this is that there may be some
confounding variables. For example, maybe cities with
ozone pollution problems are introducing non-natural
trees in an effort to reduce air quality.

The first split for both log-transformed CO and log-
transformed NO2 were the number of trees being greater
than 16,000, and being above this threshold was asso-
ciated with higher predicted CO and NO2 values. This
result is also counterintuitive as we would expect more
trees to result in less air pollution. It’s possible that trees
do not have a significant impact on the altering CO or
NO?2 levels or, similarly to the ozone pollution, cities are



with high CO and NO2 levels are actively planting more
trees in an effort to reduce pollution.

It is worth noting that when using cross validation to
tune the decision tree complexity, the resulting tree for
almost all response variables had no splits, with the ex-
ception of PM2.5 which had only the first split on the
natural proportion. This indicates that in a predictive
setting, these trees would be overfitting, and the associ-
ations from the splits in these trees are likely not very
strong.

4.3.2 Variable Importance

The variable importance plots for both the decision trees
(Figure 16) and the random forests (Figure 17) can be
found in the appendix. Although we found in the linear
models that none of the predictors had a significant as-
sociation with the response, these variable importance
plots can give us a sense of how these predictors would
rank for predicting a given air quality value regardless of
whether it’s significant or not.

For AQI, Ozone, and PM2.5, natural proportion was a
clear winner for having the most importance among the
four predictor variables in the decision trees. In OLS sec-
tion, we also found that the best model through stepwise
selection for predicting ozone was a model with natu-
ral proportion as the sole predictor, so this aligns with
our previous result. However, for AQI and PM2.5, the
stepwise models previously found density and number
of trees to be the more significant predictors. The dis-
crepancy between the linear model and the decision tree
might be because the natural proportion is not linearly
related to AQI and PM2.5, so the linear-based models did
not capture this relationship. Looking at the EDA scat-
terplots (Figure 3, Appendix Figures 7-10), there does
seem to be a weak pattern in the naturally occurring
proportion plots that is non-linear.

For the CO and NO2 decision trees, the number of
trees was the most important variable, which aligns with
the first splits of the decision trees for these variables.

For the random forest models, the top variable was nat-
ural proportion for all response variables. This further
suggests that air quality may be strongly associated with
the proportion of naturally occurring trees non-linearly.
For CO and NO2, the importance of natural proportion
is much more obvious than for the other air quality re-
sponse variables. This is likely due to the fact that mtry
for CO and NO2 was 4, so natural proportion was always
a variable that could be chosen if it was the most predic-
tive. On the other hand, the other models had mtry =
2, so there were certain splits where natural proportion
was no considered, leading it to have deflated variable
importance.

5 Discussion and Conclusions

5.1 Overall Findings

Across all our approaches, we generally found that our
predictors were not very powerful for predicting air qual-
ity. The p-values of our linear regression models were
very high (none were significant), and the decision trees,
when using cross-validated tuning parameters, resulted
in models with no splits.

However, there were some predictors that arise as po-
tentially being associated with air quality. In particular,
proportion of naturally occurring trees was shown to be
a good predictor of ozone pollution in the stepwise mod-
els, the decision tree, and the random forest. In the Ridge
and LASSO models, natural proportion was the last pre-
dictor to be regularized for all of the response variables,
which also shows that it may be a good predictor. Addi-
tionally, density, number of trees, and natural proportion
may be potential predictors of AQI and PM2.5 based on
the top decision tree splits and the stepwise models.

5.2 Challenges Faced

In assessing the relationship between several tree charac-
teristics in urban environments and air quality measured
by AQI values, the goal is to explore the role of trees as
natural mitigators and indicators of urban air pollution.
However, several challenges and considerations arise.

In particular, our small dataset may not represent
the wide variety of tree species, urban environments,
and pollution levels. This limits the ability to general-
ize findings to broader contexts. This was a concern
when conducting cross validation for fitting the Ridge
and LASSO models. Given that the response variable
was measured using AQI, the small dataset made it more
probable to have uniform values in a single fold, which
was also a challenge when constructing the decision tree
and random forests. There was greater risk of overfitting,
especially as the number of predictors increased when
introducing interaction terms. The small sample size of
the dataset also contributed to the large p-values, as it re-
duced the statistical power of the analysis and increased
the risk of Type II errors.

5.3 Future Considerations

To solve this data issue, conducting nationwide tree sur-
veys can provide more comprehensive data. Having
more coverage across the US, as well as filling in the
gaps for specific species, ages, health status, and loca-
tions of trees would increase the statistical power of this
analysis. However, there are many obstacles to overcome
to conduct this data collection. Comprehensive surveys
require significant time, labor, and financial resources.



Moreover, gaining access to all urban areas, especially
private properties, can be difficult, as well as ensuring
consistent data collection methods across different re-
gions for data quality.

Having access to a more comprehensive and robust
dataset opens avenues to new paths of exploration.
Specifically, some species might be more efficient due to
their physical characteristics, like leaf structure or tran-
spiration rates. Given that we found from this study that
the proportion of native species plays a role in predicting
air quality, investigating individual tree species’ effec-
tiveness in combating air pollution may yield interesting
and significant results.

The potential of trees as natural mitigators of urban
air pollution is a promising area of study. However, re-
alizing this potential requires overcoming the challenges
of small datasets through comprehensive data collec-
tion, species-specific analysis, and a multidisciplinary
approach that includes public engagement and policy
implications, and has significant implications for urban
planning and public health.

5.4 Concluding Remarks

This study sought to explore the relationship between ur-
ban trees and air quality, as indicated by AQI values, and
while the results were not as robust as we wanted, they
provide a crucial starting point for further research. The
findings tentatively suggest that the proportion of natu-
ral trees may have a mitigating effect on certain types
of air pollution, such as ozone. However, the limita-
tions of our dataset and the challenges faced underscore
the need for more extensive data to draw firmer conclu-
sions. Despite the encountered limitations — especially
the small sample size and its impact on the robustness
of statistical inferences — our research serves as a foun-
dational step towards a more nuanced understanding of
how urban greenery influences air quality. As cities con-
tinue to grow and environmental concerns become more
pressing, understanding and leveraging the role of ur-
ban trees could contribute to healthier, more sustainable
urban environments.
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6 Appendix
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Residuals vs. Fitted Values for Baseline
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Figure 12: Normal QQ plot for residuals of baseline model predicting AQI
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Figure 15: Decision trees for CO, Ozone, NO2, and PM2.5
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Figure 17: Variable importance for random forest



