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Abstract: Coverage denials by insurance companies are a growing concern, leaving
patients with unexpected medical bills and decreasing trust in insurance. We analyze how
insurance companies may exploit information asymmetries by denying claims in a manner
that is only gradually learned by consumers. We add an extension to adverse selection by
incorporating dynamic Bayesian learning of consumer belief about denial rate. Our analytical
toy model shows that insurers can maximize long-term profits by partially denying claims and
allowing naive consumers to gradually drop out. Through simulations, we model consumers
with heterogeneous risk levels who update their beliefs of claim denial rate based on personal
claim experiences. We find that high-risk individuals exit earlier, initially improving the
risk pool before low risk individuals also exit. This leads to a non-monotonic path in the
evolution of the risk composition of the insured pool. Our results reveal how belief-based
dropout creates strategic opportunities for insurers and suggests that temporary market
stability can obscure deeper instability. These insights challenge static insurance models
and highlight the need for consumer protections and transparency. Future extensions may
explore interventions such as public denial rate disclosures or dynamic pricing schemes to

stabilize participation and equity in health insurance markets.



1 Introduction

In recent years, coverage denials by health insurers have drawn widespread scrutiny from
both policymakers and the public. Patients often find themselves unexpectedly responsible
for high medical bills, even after paying premiums and believing they were covered. At the
heart of this phenomenon is a growing practice among insurers to deny claims based on vague
criteria like "medical necessity” or pre-existing conditions. While such denials are ostensibly
a tool for cost control, they also reshape the incentives and beliefs of insured individuals.
Patients who experience denial not only face financial harm but may also revise their expec-

tations of future coverage, ultimately leading them to exit the insurance market altogether.

From a theoretical perspective, this phenomenon poses a challenge to classical models of
insurance under asymmetric information. In the canonical Rothschild-Stiglitz framework,
adverse selection causes high-risk individuals to self-select into generous contracts, while
low-risk individuals drop out, rendering full insurance unviable. But this model assumes
that claims, once insured, are always honored. The reality of frequent coverage denials sug-
gests that insurance itself is a risky good. This raises new questions: What happens when
patients learn over time that their insurer is less likely to pay out? Can insurers profit by
exploiting the gap between perceived and actual claim approval rates? And how does this

affect the composition of the insured pool and long-term market dynamics?

We investigate these questions using both analytical and computational models. Our work
builds on and extends prior literature, particularly a recent paper by Chade and Schlee
(2020). They show how even in the presence of gains from trade, coverage may be denied
to high-risk individuals due to provision costs, and markets may exhibit complete pooling
or even fail to exist. Our contribution lies in incorporating belief updating and dynamic
consumer behavior into this framework. We find that denial-based dropout can lead to sur-
prising results, including temporary improvements in risk pool quality and non-monotonic

selection effects.



2 Phenomenon Description

The phenomenon we study is the denial of health insurance claims—specifically, how insur-
ers make profits by denying coverage in ways that are not always transparent or anticipated
by consumers. Empirical data suggests that insurers routinely deny a significant fraction
of claims, with 19% of in-network and 37% of out-of-network claims denied under the ACA

marketplace.

From a societal standpoint, this is highly suboptimal. Health insurance is meant to reduce
the financial volatility of health shocks. But if individuals are uncertain whether claims
will be approved, or if denial seems arbitrary, the utility of insurance diminishes. This is
especially harmful for risk-averse individuals, who are precisely those most likely to value

insurance.

Our central claim is that insurers can profit from increasing denial rates precisely because
insured consumers do not immediately update their expectations. A key insight is that con-
sumers only learn about denial probabilities through their own claim experiences. High-risk
consumers, who are more likely to file early claims, update faster and drop out sooner. Low-
risk consumers may remain insured longer, creating a temporary improvement in the insured

pool that is reversed over time.

Our analytical model shows how such strategies can produce equilibria where insurers set
denial thresholds that maximize expected profit over a consumer’s lifetime—balancing claim
costs against dropout probabilities. Our simulation then confirms that under Bayesian learn-
ing, belief updating leads to declining participation, rising adverse selection, and eventual

market erosion.



3 Literature Review

3.1 Rothschild-Stiglitz Model

Proposed in 1976, the Rothschild-Stiglitz model was the first to consider the consequences
of imperfect information in insurance markets |4]. In this model, a health event is modeled
as a decrease in income, —c. The insurance contract is given by the vector (aq, asy), where
aq is the cost of the contract, and as is the payout if a health event occurs. Finally, there
exist two groups of buyers, a high-risk group with probability s of a health event, and a
low-risk group with probability s* of a health event. If the fraction of high-risk customers
is A\, then the expected probability of incident for the firm is 5 = (1 — \)s’ + Asfl.

The customer always has the option of not purchasing insurance, in which case U = —pc.
The value of contract for a buyer with known probability p is U’ = —ay +p(—d+ ), so they
will only buy if U' — U > 0, or a; < pas. It is a reasonable assumption that the firm does
not know any individual p, since that is private information, but does know the expected p
over the population, from sources like actuarial tables. Therefore, expected utility of a firm
for selling one contract is is U = oy — pas. Assuming consumers will buy at AU = 0, and

the population has a homogeneous p, then all insurance contracts sold will be described by

(]5012,0(2).

However, if there are low-risk buyers and high-risk buyers, then the utility of the low-risk
buyers for a contract (pas, ) is given by UY = —pas + pL(—d + as), which is negative,
since p > p* by definition. Therefore, they choose to not buy insurance, and they drop
out of the market, which means that the new expected probability of an health event
is p = pf, and high-risk individuals are offered (p?af’,a!?). This prompts the con-
sideration of a separating equilibrium, where high-risk buyers are offered coverage at or
(pHatl af), such that UP = —pfd. However, low-risk buyers will not choose this con-
tract, since AUL = —pHaf 4+ ptal! < 0. Now, say that low-risk buyers are offered con-
tracts, (pfal,al), which gives utility U* = —pla® + pl(—al + d) = —pld, or fair odds.
However, high-risk buyers would also choose this contract, since their utility is given by
AU = —plat + pH(—d + o) + pfd = —plal + pfa¥ > 0. Therefore, Rothschild and

Stiglitz conclude that there can exist no separating equilibrium.

In the same way that the sale of used car is a “lemons market,” and low-quality cars drive

down the sale of high-quality cars, the cost of insuring high-risk individuals drives out the



participation of low-risk individuals, and a pooling equilibrium cannot exist. This phe-
nomenon is known as “adverse selection.” However, in modern insurance markets, there are
more low-risk individuals than high-risk individuals, and insurance firms increase profit for
every contract sold, so the phenomenon of “advantageous selection” occurs, in which firms
attempt to exclude high-risk individuals from coverage, so that they can insure low-risk in-
dividuals for (pfas, as) [2]. This can occur either through outright denial of coverage for

pre-existing conditions, or absurdly high premiums.

3.2 Claim Denial & Risk Aversion

One limitation of the Rothschild-Stiglitz Model is that insurance is assumed to be a fixed
contract, where ay is always paid out. However, Schelesinger and Schulenburg extend the
Rothchild-Stiglitz model by assuming that consumers are aware of some fixed rate of not
being indemnified by their insurers after a claim [5]. They define 3 distinct probabilities: ¢,
which represents no accident occurring, ¢», for an accident occurring and being covered, and
qs3, for an accident which is not indemnified. Clearly, we see that p = g2 + g3, but value of a
contract to the customer is U = —ay + @oia, since claims are only paid out with probability
q2. Therefore, since go < p for g3 # 0, we see that less insurance is purchased, since each

customer behaves like a lower-risk customer than they are.

In the Rothschild-Stigliz model, it’s clear that risk adversion leads to an increase in con-
sumption, since insuring against —d, which is presumed to be a large loss, is more important
than not paying «;. However, Schelesinger and Schulenburg assert that if even if buying
insurance is a risky act, due to the possibility of claim denial, if a risk-adverse buyer’s utility

is given by V' = goU, where g is a concave functions, they will still purchase more insurance.

Importantly, Schelesinger and Schulenburg assume that the rate of claim denial is not de-
cided by insurance providers, but the result of circumstances such as insolvency on the part
of the insurer, or ambiguity as to which conditions are covered. In modern insurance mar-
kets, insurers are able to deny claims based on treatments being “not medically necessary.”
Clearly, this implies that absent of regulation, insurance providers can maximize profits by
increasing rates of claim denial. Combined with the observation that risk-aversion leads to
higher consumption of insurance, insurance companies could raise rates of claim denial until
they have consumed the risk-averse buyer’s perceived surplus. Empirically, this is observed
by insurers of qualified health plans denying 19% of in-network claims, and 37% of out-of-

network claims [3].



More recently, Chade and Schlee (2020) [1] reconceptualize insurance as a lemons mar-
ket. They argue that provision costs—such as administrative processing or fixed costs of
underwriting—can create outcomes where insurers deny coverage to those perceived as the
worst risks. Their comparative statics theorem shows that once there is no trade at some
level of perceived risk, trade fails entirely for worse risks. This formalizes the intuition
that insurers deny coverage selectively, targeting the individuals from whom they expect to
lose money. They also demonstrate that such markets can exhibit pooling equilibria where

all types receive the same contract, challenging the traditional prediction of complete sorting.

Our contribution differs in two major ways. First, we explicitly model claim denial not as
an ex-ante contract feature but as a stochastic post-contract event, whose probability is
gradually learned by consumers. Second, we simulate how dropout dynamics unfold in a
multi-period setting, where belief updating occurs through private experience. This adds
a behavioral layer to the lemons logic and highlights the path-dependent nature of market
erosion. The interaction of Bayesian learning with claim denial behavior reveals selection

patterns that are nonlinear and time-varying—a nuance that static models cannot capture.

Taken together, our work contributes to a growing literature that seeks to understand the
real-world frictions in insurance markets—beyond the classical assumptions of full contract
execution and instantaneous learning. It supports the emerging view that adverse selection
is often shaped not just by hidden types, but also by hidden features of the contract itself,
such as the reliability of payout.



4 Insurer-Side Approach

4.1 Motivation

In this work, we want to understand the effects of claim denial rates set by insurance
providers, as they are learned by patients through signals. Firstly, we will find the ana-
lytical solution to a toy model to show the existence of a non-trivial, finite equilibrium for
claim denial. Then, we will model additional factors, such as risk aversion and Bayesian

learning by numerical simulation.

4.1.1 Model Parameters

In this model, we consider one monopolistic insurance provider, which sets the insurance
contract and one patient, which can choose to stop purchasing insurance at any year. The
profit of the insurance provider in given by U; = Ei [p — C], where C' is the distribution
of healthcare costs covered by the provider, and k is the distribution of years that the
patient purchases healthcare. Each patient acts symmetrically and independently, so the

maximization of expected profit over time generalizes to the n patient case.
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Figure 1: A patient’s healthcare claim is drawn from the distribution  ~ Ae™**. In region
I, where x < x1, the consumer is fully compensated for their claim, as expected. In region
IT, where zy < x < x1, the consumer’s claim is unezpectedly denied. In region III, where
1 < x, the consumer is not compensated for their claim, as expected.

Each year, the patient’s healthcare needs are drawn from the exponential distribution
Pr(X =) = f(z) = e Pr(X <z)=F(z)=1—¢

which reflects the assumption that worse health events occur less frequently. The insurance

contract is governed by (p, zo), where p is the yearly premium, and ¢ is threshold up to which



the insurer will pay all claims. By the memoryless property of the exponential distribution,

we can set p = 1/A without loss of generality.

4.1.2 Insurance Utility

Now, consider a deceitful, profit-maximizing insurance provider which only compensates
claims up to 1 < xy. To simplify, we will assume that a when a naive consumer files a claim
in region II, where 1 < x < x( and is denied, they will learn that they have been deceived

and immediately cease purchasing insurance. In any given year, this occurs with
Pr(z € 1) = Pr(z; <z < mp) = F(mg) — F(11) = —e 0 4 71

Then, if a patient purchases insurance k + 1 times, then in the first £ turns, they must have
submitted a claim z ¢ II, which occurs with probability 1 — ¢ = 1 + e % — ¢=*¥1, The
k + 1th turn must be the one where the consumer is unexpectedly denied, so the insurance

profits U I(k) = 1/A. Therefore, we can calculate the firm’s expected profit as

1

Uw=X+§;G—QV¢k@—E$ﬂx¢m)

since a firm earns kp from a patient who files £ claims where x ¢ II, but it costs kE.[C|x ¢ 1I]
to compensate those claims. If x € III, then there is no cost to compensating the claim, so

by the law of total probability, we compute
E.[C|z ¢ II) = Pr(z € I|x ¢ II) - E.[C|z € ]

Then, by the law of conditional probability, we have

Pr(zcl) e
1—Pr(z ¢1) 1+e 0 —eAn

Pr(x € I|lz ¢ II) =

since the firm only has costs if the patient’s claim is in region I. The expectation of insuring

a claim x < x; is given by

(1 —e 1) — e

T
E.[C|z €] = / rhe Mdy =
0

> =



4.1.3 Profit Maximization

For all xg, the insurance firm makes a profit regardless of what region the consumer’s claim
lies in, since the premium p = 1/\ is the expected cost to the insurer for a policy that covers
all claimsﬂ Therefore, in the limit where t — oo, or there are infinite turns, the sum U;
diverges at 1 = z5. We can interpret this as Pr(z € II) = 0, so the consumer purchase
insurance indefinitely, leading to infinite profits for the firm. However, no firm maximizes

profit over an infinite timescale, so we analyze the behavior of the finite case.
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Figure 2: U; as a function of x; for ¢ = {100,200, 400,800} when xy =5 and A =1

In this toy model, we observe the existence of a global maximum value for z; € (0,x),
where the insurance firm is neither incentivized to deny all claims, nor to compensate all
of them. Additionally, we observe that as t increases, so does the optimal value of xi,
which asymptotically approaches z(, the solution to the infinite case. Mathematically, this
phenomenon occurs because avoiding the payment of large claims x > x; is more profitable
than retaining customers indefinitely. Furthermore, when we consider heterogenous risk
type, a patient filing a large claim may be an indicator of latent health issues, in which case
the firm may not even want to insure them. To explore this phenomenon, we turn to a

numerical simulation.

"Why would a consumer purchase insurance where the firm always makes a profit? This is a difficult
question, since unlike other goods, insurance has a common monetary value. However, we can consider a
risk-adverse consumer, or that insurance has the bargaining power to provide healthcare at a lower cost than
a consumer would otherwise be able to obtain it.



5 Comsumer-Side Approach

5.1 Model Parameters

To explore the effects of differentiation between patients, we consider a toy model with two
patient types in a multi-period setting. In any given period, a high-risk consumer is sick
with probability sy and a low-risk consumer is sick with probability s;. This is the only
parameter that differentiates these two patient types. If a consumer is sick, then they incur

a monetary loss —c.

As in Rothschild-Stiglitz, insurance is denoted by the tuple (p, ¢). When a health loss occurs,
the insurer pays claim ¢ with probability 1 — d, which fully compensates the consumer.
However, a claim is denied withprobability d, in which case the consumer incurs the full loss

¢ in addition to paying the premium p.

5.2 Consumer Behavior and Decision Process
Consumers are risk-averse and evaluate outcomes using a concave utility function. We adopt
the Constant Absolute Risk Aversion (CARA) utility:

u(r) = — exp(—ax),

where z is the net monetary outcome. « > 0 is the risk-aversion parameter, and higher values
indicate stronger risk aversion. This formulation captures diminishing marginal utility and

is well-suited for modeling risk in loss scenarios.

5.2.1 Expected Utility Comparison

Let s; denote the sickness probability for a consumer of type ¢ (with s; € {sy, s.}), and let

d denote the consumer’s perceived claim denial rate. Then:

1. If Insured: The consumer pays the premium p. In the event of sickness, the claim
is approved with probability 1 — d and the consumer receives full compensation ¢, so
the net loss is —p. However, the claim is denied with probability d, which leads the
customer to incur an additional loss ¢, for a net loss of —(p+c¢). Therefore, the expected

utility when insured is:

Uinsured = (1 — 8;) u(—p) + s; [(1 — d) u(—p) + du(—p — ¢)].

10



Substituting the CARA expression for utility, we have

Uinsured = — exp(—ap) [1 — s;d + s; d exp(—ac)].

2. If Uninsured: A healthy consumer incurs no cost, whereas if sick the consumer bears
the full cost c:

Umninsured = (1 — 8;) u(0) + s; u(—c) = —| (1 — s;) + s; exp(—ac)|.

5.2.2 Consumer Decision Rule

A consumer chooses to remain insured if Uipsured = Uuninsureds O
—exp(—ap) |1 —s;d+ s;d exp(—ac)} > — [(1 —8) + 8 exp(—occ)].

This condition implicitly defines a threshold premium p* for a given risk type. The proportion

of consumers who remain insured is given by

17 if Uinsured 2 Uuninsureda

1 n
Fractionga, = - Z Stay; Stay; = ,
) 0, otherwise.

5.3 Insurer’s Profit Function

In a period, t, let N; be the number of insured consumers, and 6, be the proportion of high-
risk, insured consumers. Under complete coverage with claim denial, the insurer pays ¢ for
each approved claim, which occurs with probability 1 — d. Therefore, the expected cost per

insured consumer is:
cost(s) = (1 — d)s;c
and the average probability of sickness over the insured pool gives
S=0;sg+(1—0,)sL
Thus, the insurer’s total profit in a period ¢ is:

Profit = N;p — Eg(cost) = Nyp — Ni(1 — d) [QtSH + (1 —0)sp|c

11



5.4 Differential Bayesian Consumer Learning

Each consumer initially holds a prior belief about the claim denial rate d that is concentrated

near zero. We model this prior by a Beta distribution:
d ~ Beta(a, 8),

with parameters chosen so that

(7))

E[dinitial] = o + 60

~ 0.

Before period 1, setting ag = 0.001 and 5y = 1 yields a prior mean of approximately 0.001.

Consumers update their beliefs about d based solely on their own claim outcomes:
e If a consumer’s claim is denied, they increment « by 1.
e If the claim is approved, they increment 3 by 1.

Thus, after each period, the consumer’s updated estimate of d is:

Qi + Ideniali

E[d | claim filed period,| = oo Bt 1
Qi1 i-1

5.5 Hypothesized Dynamic Effects

e Declining N;: Customers begin dropping out when they experience a negative health
outcome at the end of each period AND gets their claim denied. Receiving a claim

denial increases an individual’s perceived d, making insurance less attractive.

e Rising 6;: The insured pool becomes increasingly composed of high-risk consumers.
Low risk consumers experience fewer negative health events and thus although they

have the same claim denial rate d, their absolute dropout rate s;d is smaller than sgd

e Profit Erosion: With fewer insured consumers and a riskier composition, the insurer’s

profit per period,
Profit, = Nyp — N, (1 — d)[8, s + (1 — 6,) sL] ¢,

decreases and may eventually become negative.

12



5.6 Simulations and Key Findings

To investigate how adverse selection and claim denial impact the dynamics in an insurance
market, we construct a multi-period simulation where consumers repeatedly make insurance
decisions while updating their beliefs. Here, we set 20% of consumers to be high-risk (with a
30% probability of getting sick) and 80% of consumers to be low-risk (with a 10% probability
of getting sick). If a consumer has insurance and falls ill, they will file a claim. If that claim
is accepted (with the denial rate set to 20%), the insurer pays out $120 per approved claim—
the same cost faced by a sick and uninsured consumer. When a claim is filed, the consumer
updates their belief about the insurer’s denial rate using Bayesian learning, which in turn
influences their future decision to stay insured.

We implemented these parameters in a multi-period simulation across a wide range of
premiums to understand breaking points: p € {10,11,12, 13,14, 15,20, 25,73,74,95}. The

simulations are averaged across 1000 independent runs per premium to ensure robustness.

Number of Insured Over Time Proportion of High-Risk Insured Insurer Profit Over Time
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Figure 3: Market variables under different premiums.

We notice some clear patterns begin to emerge:

e Declining N;: As expected, lower premiums lead to higher and more stable partici-
pation. At p = 10, a very large majority of all consumers stay insured across 30 time
periods. Conversely, at p = 73, the number of insured individuals declines significantly
as many consumers, particularly low-risk ones, exit the market in response to high
prices and evolving beliefs. At p = 74, we observe that it is not worth buying insur-
ance for low-risk consumers and that at p = 95, it is not worth buying insurance for

any consumer.

e Risk Pool Composition 6;: From the second graph, we observe once again the fully
high-risk composition of insurers at p = 74 and no high-risk composition of insurers
at p = 95. Most of the mid-range premiums seem to stay around the starting high-

risk proportion of 0.2 (though we will inspect this further below). Interestingly, we
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see that at p = 73—the highest premium where all consumers buy insurance—, 6;
declines. This can be explained by the high premium acting as a filter. After just
one or two denied claims, the perceived value of insurance drops dramatically for these
high-risk consumers who are more likely to file claims early-on. As a result, they will

continuously exit the market as soon as they are denied.

e Profit Erosion: Profits generally rise with premium level though profit growth shrinks

as consumers leave. At low premiums (like p = 10), insurers struggle to cover expected
payouts, leading to near-zero or negative profit. Intermediate premiums like p = 20
and p = 25 offer a more balanced trade-off—moderate profits with a relatively stable
insured population. Just below these mid-range premiums, a premium of p = 74 where
only high-risk consumers buy insurance will result in worse initial profit and steeper
profit decline. We also observe how at p = 73, insurance companies will make the most

profit but at the steepest profit decline.

Zooming in on mid-range premium levels where all types of consumers buy insurance, we

see an interesting phenomenon across all the premiums in the middle graph of Figure 3.
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Figure 4: Market variables under reasonable premiums.

Looking at the proportion of high-risk insured consumers against time period, we see

that 6, initially drops before increasing. This behavior contradicts the typical expectation in

models of adverse selection, where we assume that as time progresses, low-risk individuals

drop out faster, and the insured pool becomes increasingly composed of high-risk consumers.

In this model, high-risk consumers are more likely to drop out in the early periods, driving

the initial dip in 6,.

We hypothesize that this early dropout among high-risk individuals is driven by their

greater likelihood of experiencing a claim event early in the simulation. Since claims can

be denied, these early experiences lead high-risk individuals to revise their beliefs about

the claim denial rate more drastically, and will choose to dropout. In contrast, low-risk

14



consumers may remain insured longer simply because they have not yet filed a claim and
thus have not encountered a negative event that would cause them to update their beliefs.
This dynamic shows how adverse selection may not be monotonic or immediate—especially
in a market with differential privacy. Differential Bayesian learning-based dropout can in-
troduce a nonlinear pattern in the composition of the insured pool, with early exits skewed
toward those with higher prior risk, temporarily improving the pool quality before the usual

adverse selection trend takes over.

6 Conclusion

Our project reveals how modeling insurance decisions as a Bayesian, multi-period learning
process exposes hidden dynamics that traditional models overlook. By allowing consumers to
update beliefs based on personal experience—particularly the outcome of claim filings—we
uncover a non-monotonic path in the evolution of the insured pool’s risk composition. While
classical models predict a steady rise in risk concentration under adverse selection, we found
that the proportion of high-risk consumers may initially decline, as they disproportionately
exit the market due to earlier negative experiences. This creates a temporary window where
the pool improves before long-run adverse selection dynamics take over. This result is im-
portant for understanding the true time path of insurance markets since it suggests that
short-term pool improvements may mask long-term instability, and that pricing strategies

should consider the belief trajectories of consumers in addition to static incentives.

Future work could explore:

e Interventions like public claim approval statistics or consumer education campaigns to

slow harmful belief updating.

e Dynamic pricing or bonus incentives to retain early high-risk consumers and reduce

churn.

e Insurer-side learning and strategy adaptation in response to belief-driven dropout pat-

terns.
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